Efecto de hongos micorrícicos arbusculares y extracto acuoso de vermicompost sobre calidad de fresa
DOI:
https://doi.org/10.35197/rx.08.03.e1.2012.13.frPalabras clave:
Fragaria ananassa, humus, análisis proximales, fenoles, flavonoides, antocianinasResumen
La aplicación de hongos micorrícicos arbusculares (HMA) y vermicompost constituye una alternativa al uso de agroquímicos para garantizar el rendimiento y calidad de los cultivos, disminuyendo el costo y el deterioro del medio ambiente. En el presente trabajo se evaluó el efecto de HMA y extracto acuoso de vermicompost (VL) sobre la calidad de frutos de fresa. Los tratamientos fueron: 1) control absoluto con agua (CTL); 2) fertilizado (F); 3) inoculado con HMA (M); 4) con vermicompost líquido (VL); 5) inoculado con HMA y fertilizado (M+F); 6) fertilizado y con vermicompost líquido (VL+F); 7) inoculado con HMA, y con vermicompost líquido; 8) inoculado con HMA, fertilizado y con vermicompost líquido (M+F+VL). Los parámetros evaluados fueron: color, peso, diámetro polar, diámetro ecuatorial, firmeza, ºBrix, análisis proximal, contenido de fenoles, flavonoides y antocianinas. Los tratamientos VL y M promovieron un peso de fruto significativamente mayor al de los frutos del tratamiento fertilizado (39%). En general los tratamientos con HMA incrementaron el % de ceniza, excepto cuando estos se combinaron con fertilizante. El tratamiento M promovió un aumento significativo del % de ceniza en los frutos de fresa en comparación con el tratamiento F (3.7% mayor). Los tratamientos con HMA y VL (solos o combinados) incrementaron el % de grasa de los frutos respecto al tratamiento F. No se encontraron efectos significativos de los tratamientos sobre el % de fibra cruda. Los frutos de plantas tratadas con VL+F fueron significativamente más firmes (20%) que los frutos del tratamiento F. Se observó que los frutos del tratamiento M+F presentaron los mayores valores de °Brix (14% más altos que en frutos del tratamiento F). Interesantemente, los frutos obtenidos de las plantas tratadas con VL y M+F presentaron un contenido de fenoles totales significativamente superior al de los frutos del tratamiento F (29 y 17%, respectivamente). En general, los tratamientos con HMA y VL promovieron la acumulación de flavonoides. Los frutos del tratamiento M presentaron un contenido significativamente mayor de estos pigmentos (1.8 veces) que los frutos del tratamiento F. El mayor contenido de antocianinas lo presentaron los frutos del tratamiento M+VL siendo 38% mayor que el contenido de estos pigmentos en frutos del tratamiento F. Los resultados demostraron que la aplicación de HMA y VL influencia significativamente atributos sensoriales y nutracéuticos de los frutos de fresa.
Descargas
Citas
Abdel-Aal, E.S.M; Hucl, P. 1999. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. American Association of Cereal Chemists, Inc. 76: 350-354 p.
Abeles, F. B; Takeda, F. 1990. Cellulase activity and ethylene in ripening strawberry and apple fruits.
Sci Hortic 42:269–275 p.
Arancon, N. Q; Edwards, C. A; Atiyeh, R; Metzger, J. D. 2004 a. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresource Technology 93:139-144 p.
Arancon, N. Q; Edwards, C, A; Bierman, P; Welch, C; Metzger, J. D. 2004 b. Influences of vermicomposts on field strawberries: 1. Effects on growth and yields. Bioresource Technology 93:145-153 p.
Arancon, N. Q; Edwards, C. A; Lee, S; Byrne, R. 2006. Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology 42:S65-S69 p.
Arancon, N. Q; Lee, S; Edwards C. A; Atiyeh, R. M. 2003. Effects of humic acids and aqueous extracts derived from cattle, food and paper-waste vermicomposts on growth of greenhouse plants. Pedobiologia (Jena) 47: 744-781 p.
Arteaga, M. G. N; Furidi F; Pino J. A; Menéndez J. L; Cartaya O. 2006. Evaluación de las aplicaciones foliares de Humus Líquido en el cultivo de tomate (Licopersicon esculentum Mill) var. Amalia en condiciones de producción. Cultivos tropicales 27 (3): 95-101 p.
Atiyeh, R. M; Arancon, N. Q; Edwards, C. A; Metzger, J. D. 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource. Technol. 75 (3):175-180 p.
Atiyeh, R. M; Edwards, C. A; Metzger, J. D; Lee, S; Arancon, N. Q. 2002. The influence of humic acids derived from earthwormprocessed organic wastes on plant growth. Bioresour. Technol. 84:7-14 p. Atiyeh, R. M; Subler, S; Edwards, C. A; Bachman, G; Metzger J. D; Shuster, W. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil.
Pedobiologia (Jena) 44:579-590 p.
Augé, R. M. 2004. Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science 84:373-381 p.
Azarmi , R; Giglou M. T; Taleshmikail, R.D. 2008. Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. African Journal of Biotechnology 7: 2397-2401 p.
Bagyaraj, D. J; Sreeramulu, K. R. 1982. Preinoculation with VA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer. Plant Soil 69:375-381. p.
Carpenter, B. 2005. Diving into compost tea. Biocycle 46:61-62 p.
Castellanos-Morales, V; Villegas, J; Wendelin, S; Vierheilig, H; Cardenas-Navarro, R. 2010. Root colonization by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria x ananassa Duch) at different N-levels. Journal of the Science of Food and Agriculture 90:1774-1782 p.
Castro, I, Gonçalves, O; Teixeira J. A, Vicente A. A. 2002. Comparative study of a Selva and Camarosa strawberries from the commercial market. Journal of Food Science 67: 2132-2137 p.
Charron G; Furlan V; Bernier-Cardou M; Doyon G. 2001. Response of onion plants to arbuscular mycorrhizae . Effects of inoculation method and phosphorus fertilization on biomass and bulb firmness. Mycorrhiza 11:187–197 p.
Cheel, J; Theoduloz, C; Rodríguez, J.A; Caligari, P; Schmeda-Hirschmann, G. 2007. Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. x ananassa cv. Chandler. Food Chemistry 102:36–44 p.
Clifford, M. N. y Scalbert A. 2000. Ellagitannins–nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture 80:1118-1125 p.
De Ancos, B; González, E. M; Cano, M. P. 2000a. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agr. Food Chem. 48: 4565-4570 p.
De Ancos, B; Ibañez, E; Reglero, G; Cano, M. P. 2000b. Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. J. Agr. Food Chem. 48: 873-879 p.
Duffy, E. M; Cassells, A. C. 2000. The effect of inoculation of potato (Solanum tuberosum L.) microplants with plant-growth promoting rhizobacteria on tuber yield and tuber size distribution. Applied Soil Ecology 15:137-144. p.
Faria, A; Oliveira, J; Neves, P; Gameiro, P; Santos,Buelga, C; De Freitas, V; Mateus, N. 2005. Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts. J. Agr. Food Chem. 53: 6896- 6902 p.
Freese, R. 2006. Markers of oxidative DNA damage in human interventions with fruit and berries. Nutr Cancer 54:143-147 p.
Given, N. K; Venis M. A; Grierson, D. 1988. Hormonal regulation of ripening in the strawberry, a non- climacteric fruit. Planta 174:402–406 p.
Gu, L; Kelm, M. A; Hammerstone, J. F; Beecher, G; Holden, J; Haytowitz, D; Gebhardt, S; Prior, R. L. 2004. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. j nutr 134:613-617 p.
Gutiérrez, M. F. A; Borraz J. S; Montes, M. J. A; Nafate, C. C; Abud, A. M; Oliva, LL. M. A; Rincón, R. R; Dendooven, L. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology 98 (5): 2781-2786 p.
Hannum, S. M. 2004. Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr 44:1-17 p.
Harpster, M. H; Brummell, D. A; Dunsmuir, P. 1998. Expression analysis of a ripening-specific, auxin- repressed endo-β-1,4-glucanase gene in strawberry. Plant Physiol 118:1307-1316 p.
Heinonen, M. I, Meyer, A. S, Frankel, E. N. 1998. Antioxidant activity of berry phenolics on human low- density lipoprotein and liposome oxidation. Journal of the Science of Food and Agriculture Chemistry 46:4107-4112 p.
Hernández-Díaz M. I; Chailloux-Laffita M. 2001. La nutrición mineral y la biofertilización en el cultivo del tomate (Lycopersicon esculentum Mill). Temas de Ciencia y Tecnología 5: 11-27 p.
Kaya, C; Higgs, D; Kirnak, H, Tas. I. 2003. Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water stressed conditions. Plant Soil 253:287-292 p.
Knee, M; Sargent J. A; Osborne, D. J. 1977. Cell wall metabolism in developing strawberry fruits. J Exp Bot 28:377-396 p.
, P. E; Palomer, X; Vendrell, M. 1999. Characterization of two divergent endo-β- 1,4-glucanase cDNA clones highly expressed in the nonclimateric strawberry fruit. Plant Physiol 119:1415-1421 p.
María, H. D; Mariza, C. L. 2001. La nutrición mineral y la biofertilización en el cultivo del tomate (Lycopersicon esculentum Mill). Temas de Ciencia y Tecnología 5:11-27 p.
Medina, E. N; Cárdenas, J; Moyano, E; Caballero J, L; Muñoz B. J. 1997. Cloning, molecular characterization and expression pattern of a strawberry ripening-specific cDNA with sequence homology to pectate lyase from higher plants. Plant Mol. Biol. 34: 867-877
Mena-Violante H. G; Ocampo-Jiménez, O; Dendooven L; Martínez-Soto G; González-Castañeda J; Davis F.T; Olalde-Portugal, V. 2006. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16:261-267 p.
Mena-Violante, H. G; Olalde-Portugal V. 2007. Alteration of tomato fruit quality by root inoculation with plant growthpromoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae 113: 103-106 p.
Meyers, K. J; Watkins, C. B; Pritts, M. P; Liu, R. H. 2003. Antioxidant and antiproliferative activities of strawberries. Journal of Agriculture and Food Chemistry 51:6887-6892 p.
Nardi, S; Pizzeghello, D; Muscolo, A; Vianello, A. 2002. Physiological effects of humic substances on higher plants. Soil Biol Biochem 34:1527-1536 p.
Olalde-Portugal V; Mena-Violante, H. G. 2008. Rhizosphere microorganisms and their effect on fruit quality. In: Postharvest Biology and Technology of fruits, vegetables and flowers (Paliyath, G; Murr, D. P; Handa, A. K; Lurie, S. Eds.). Wiley-BlackWell, Canada: 496 pp.
Olsen, S.R; Sommers, L.E. 1982. Phosphorus. En: Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. A.L. Page, R.H. Miller & D.R. Keeney (Eds). Madison, Wisconsin: American Society of Agronomy 403-427 p.
Pant, A. P; Radovich, T. J., Hue, N. V; Talcott, S. T. and Krenek, K. A. 2009. Vermicompost extracts influence growth, mineral nutrients, phytonutrients and antioxidant activity in pak choi (Brassica rapa cv. Bonsai, Chinensis group) grown under vermicompost and chemical fertiliser.
J. Sci. Food Agriculture 89: 2383–2392 p.
Pernía, T; Corao G.M; Atrajo L. 2004. Actividad anti-inflamatoria de la hialuronidasa por los polifenoles en la fruta de la fresa (Fragaria vesca L.). Boletín latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 3:73-76 p.
Perkins, V. P. 1995. Growth and ripening of strawberry fruit. Hortic Rev. 17:267-297 p.
Prior, R. L; Cao, G; Martin, A; Sofic, E; Mcewen, J; O’brien, C. H; Lischner, N; Ehlenfeldt, M; Kalt, W; Krewer, G. et al. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agr. Food Chem. 46: 2686-2693 p.
Proteggente, A. R; Sekher, P. A; Paganga, G; Van Buren, L; Wagner, E; Wiseman, S; Van De Put, F; Dacombe, C; Rice-Evans, C. A. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Res. 36: 217-233 p.
Rababach, T. M; Ereifej, K. I; Howard, L. 2005. Effect of ascorbic acid and dehydration on concentration of total phenolics, antioxidant capacity, anthocyanins, and color in fruits. J. Agr. Food Chem. 53, 4444-4447 p.
Redgwell, R. J; MacRae, E; Hallett, I; Fisher, M; Perry, J; Harker, R. 1997. In vivo and in vitro swelling of cell walls during fruit ripening. Planta 203:162-173 p.
Scalzo, J; Politi, A; Pellegrini, N; Mezzetti, B; Battino, M. 2005. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21:207-213 p.
Scheuerell, S. J, Mahaffee, W. F. 2002. Compost tea: principles and prospects for plant disease control.
Compost Sci Util 10:313-338 p.
Singleton, V.L. and Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144-158 p.
Smith, S. E; Read, D. J. 1997. Mycorrhizal Symbiosis. Academic Press, San Diego.
Sun, J; Chu, Y. F; Wu, X, Liu, R. H. 2002. Antioxidant and antiproliferative activities of fruits. J Agric Food Chem 50:7449-7454 p.
Trainotti, L; Spolaore, S; Pavanello, A; Baldan, B; Casadoro, G. 1999. A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits. Plant Mol. Biol. 40:323-332 p.
Tsavkelova, E. A; Klimova, S. Y; Cherdyntseva, T. A; Netrusov, A. I. 2006. Microbial Producers of Plant Growth Stimulators and Their Practical Use: A Review. Appl Biochem Microbiol 42:133-143 p.
Vessey, K. J. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571-586 p. Whipps, J. M. 2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J
Bot. 82:1198-1127 p.
Woodman, O; Chan, E. 2004. Vascular and anti-oxidant actions of flavonols and flavonones. Clinical and Experimental Pharmacology and Physiology 31:786-90 p.
Woodward, J.R. 1972. Physical and chemical changes in developing strawberry fruits. Journal of the Science of Food and Agriculture 23:465–473 p.
Zandonadi, D. B; Canellas, L. P; Facxanha, A. R. 2007. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583-1595 p.
Zehnder, G.W; Murphy, I.F; Sikora, E.J; Kloepper, J.W. 2001. Application to rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107:39–50 p.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2012 Fabián Heriberto Rivera Chávez, Luz Elena Castillejo Álvarez, Gilberto Vázquez Gálvez, Valentina Angoa Pérez, Hortencia Gabriela Mena Violante
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.