Producción de biocombustibles a partir de microalgas

Autores/as

  • Luis Carlos Fernández Linares
  • Jorge Montiel Montoya
  • Aarón Millán Oropeza
  • Jesús Agustín Badillo Corona

DOI:

https://doi.org/10.35197/rx.08.03.e2.2012.10.lf

Palabras clave:

Biodiesel, bioetanol, fotobiorreactores, algas, cianobacterias, sustentabilidad, ecología industrial

Resumen

Se hace una revisión de la situación de los biocombustibles en el mundo, principalmente del biodiesel. Se comparan las diferentes materias primas para la síntesis de biodiesel y se enfatiza en la producción de éste a partir de microalgas. Se comparan las diferentes microalgas de agua dulce y salada en cuanto a su contenido lipídico y productividad. Se revisa el proceso de biosíntesis de los lípidos y como se puede mejorar su producción de lípidos en estas. Se discute la importancia de manipular genéticamente a Botryrococuus braunni, Nannochloropsis sp, Noechlorisoleobundans y Nitschia sp. También se hace un estudio de las ventajas y desventajas de los diferentes sistemas de cultivo de microalgas. Finalmente se presenta una perspectiva de los biocombustibles a partir de las microalgas. Entre los principales retos a vencer para producir biodiesel están: El costo de producción de biomasa, que involucra la optimización de medios, selección y manipulación de cepas y el diseño de fotobioreactores. También se debe considerar el proceso de separación de biomasa, la extracción de aceites y subproductos, la optimización del proceso de transesterificación, purificación y uso de subproductos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdullah, A. Z., Razali, N., Mootabadi, H. y Salamatinia, B. 2007. Critical technical areas for future improvement in biodiesel technologies. Environmental Research Letters. 2:1-6.

AIE. 2006. Bioenergy Annual Report (2006). IEA Headquarters, Paris France. 124 pp

Amaro, H. M., Guedes, A. C. y Malcata, F. X. 2011. Advances and perspectives in using microalgae to produce biodiesel. Applied Energy 88(10): 3402–3410.

Balat Mustafa, HavvaBalat y Cahide Oz, 2007, Progress in bioethanol processing, Progress in energy and combustion science, Turquía. 23 pp.

Balat, M. 2011. Potential alternatives to edible oils for biodiesel production: A review. Energy Conversion and Management. 52(2): 1479-1492.

Balat, M. y Balat, H. 2010. Progress in biodiesel processing. Applied Energy. 87(6): 1815-1835.

Banerjee, A., Sharma, R; Chisty, Y and Banerjee, U.C. 2002. Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology. 22(3): 245-279.

Barbosa, M. J., Hadiyanto, R. y Wijffels, H. 2003. Overcoming shear stress of microalgae cultures in spargedphotobioreactors. Biotechnol.Bioeng.85, 78-85.

Beer, L. L., Boyd, E. S., Peters, J. W. y Posewitz, M. C. 2009. Engineering algae for biohydrogen and biofuel production. Energy Biotechn. 20(3): 264-271.

Behzadi, S. y Farid, M. M. 2007. Review: examining the use of different feedstock for the production of biodiesel. Journal of Chemical Engineering. 2(5): 480-486.

Borowitzka, M. A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313-321.

Boyle, G. (2004). Renewable energy, power for a sustainable future. Oxford University Press, Oxford. Brennan, L. y Owende, P. 2010. Biofuels from microalgae: a review of technologies for production,

processing, and extractions of biofuels and co-products. Renew. Sust. Energ. 14(2): 557–577.

Brown A. C., Knights B. A., Conway E. 1969. Hydrocarbon content and its relationship to physiological state in the green alga Eotryoecoccusbraunii. Phytochemistry, 8, 543-547.

Cheng, L. H., Lv, J. M., Xu, X. H., Zhang, L. y Chen, H. L. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology. 101(17): 6797–6804.

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances. 25(3): 294-306.

Chisti, Y. 2011. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology. 26(3): 126-131. Chisti, Y. y Yan, J. 2011. Energy from algae: Current status and future trends. Applied Energy. 88(10):

–3279.

Courchesne, N. M., Parisien, A., Wang, B. y Lan, C. Q. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of Biotechnology. 141(1-2): 31–41.

Degen, J., Uebele, A., Retze, A., Schmidt-Staigar, U. y Trosch, W. A. 2001. A novel airlift photobioreactor with baffles for improved light utilization through flashing light effect. Journal of Biotechnology. 92(2): 89-94.

Demirbas, A. 2010. Energy Sources Part A. Recovery Utilization en Environmental Effects. 32 (10): 909:910.

Demirbas A. 2009. Political, economic and environmental impacts of biofuels. A review. 86(2009) S 108- S 117.

Demirbas A. y Demirbas M. F., 2010. Algae Energy: Algae as a New Source of Biodiesel. Springer London Dordrecht Heidelberg New York. e-ISBN 978-1-84996-050-2

Departamento de Energía de los Estados Unidos. 2011. International energy outlook 2011. Washington: AIE.

Departamento de Energía de los Estados Unidos. 2011. World crude oil prices. Washington. AIE. EBD. 2012. European Biodiesel Board. (En línea). Disponible en: http://www.ebb-eu.org/stats.php.

Garibay-Hernández, A., Vázquez-Duhalt, R., Sánchez-Saavedra, M. y Martínez-Jiménez, A. 2009. Biodiesel a partir de Microalgas. Sociedad Mexicana de Biotecnología y Bioingeniería. 13: 38-61.

Greenwell, H. C., Laurens, M. L., Shields, R. J., Lovitt, R. W. y Flynn, K. J. 2009. Placing microalgae on the biofuels priority list: a review of the technological challenges. J. Roy. Soc. 10: 703-726

Harwood, J. L. y Guschina, I. A. 2006. Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research. 45(2): 160–186.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. y Darzins, A. 2008.Microalgaltriacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal. 54: 621-639.

Huang, G. H., Chen, F., Wei, D., Zhang, X. W. y Chen, G. 2010. Biodiesel production by microalgal biotechnology. Applied Energy. 87(1): 38-46.

IPCC. 2009. Intergovernmental panel of climate change. (En línea). Disponible en: http://www.ipcc.ch/ Janssen M, Tramper J, Mur L. R, Wijffels R. H. 2003.Enclosed outdoor photobioreactors: light regime,

photosynthetic efficiency, scale-up, and future prospects. Biotechnol.Bioeng. 81:193–210.

Khan, S. A., Hussain, M. Z., Prasad, S. y Banerjee, U. C. 2009. Prospects of biodiesel production from microalgae in India. Renew. Sust. Energ. 13 (9): 2361–2372.

Koksharova, O. A. yWolk, C. P. 2002. A novel gene that bears a DnaJ motif influences cyanobacterial cell division. J. Bacteriol. 184, 5524-5528

Lee, J. S. y Lee J. P. 2003. Review of advances in biological CO2 mitigation technology. Biotechnol.

Bioproc. E 8 (2003). pp. 259–354.

Li, Q., Du, W. y Liu, D. 2008. Perspectives of microbial oils for biodiesel production. Applied Microbiology Biotechnology. 80: 749-756.

Lin Q., Lin J. 2011. Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmusrubescens like microalga. Bioresource Technology. 102(2): 1615–1621

Mata, T. M., Caetano, N. S. y Martins, A. A. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews. 14(1): 217-232.

Metzger P. y Largeau. 2005. C. Botryococousbraunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66: 486-961.

Murphy D.J. (2001). The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Progress in Lipid Research.40: 325–438.

Mutanda, T., Bux, F., Ramesh, D., Karthikeyan, S., Kumari, S. y Anandraj, A. 2010. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource Techn. 102(1): 57–70.

NBB. 2012. US National Biodiesel Board. (En línea). Disponible en: http://www.biodiesel.org/production/production-statistics

Pérez-García, O., Escalante, F. M., De Bashan, L. E. y Bashan, Y. 2011. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research. 45(1): 11-36.

Pruvost, J., Van Vooren, G., Cogne, G. y Legrand, J. 2009. Investigation of biomass and lipids production with Neochlorisoleoabundans in photobioreactor. Bioresource Technology. 100(23): 598Bf8– 5995.

Pulz, O. 2001.Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol.

Biotechnol.57, 287–293.

Ratledge, C. 2002. Regulation of lipid accumulation in oleaginous micro-organisms. Biochemical Society Transactions. 30(6): 1047–1050.

Rajakumari, S., Grillitsch, K. y Daum, G. 2008. Synthesis and turnover of non-polar lipids in yeast.

Progress in Lipid Research. 47(3): 157–171.

Rittman, B. 2008. Opportunities for renewable bioenergy using microorganisms. Biotechnology and bioengineering.100(2):203-12.

Robles-Medina, A., González-Moreno, P. A., Esteban-Cerdán, L. y Molina-Grima, E. 2009. Biocatalysis: Towards ever greener biodiesel production. Biotechnology Advances. 27(4): 398–408.

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussnug, J. H., Posten, C., y otros. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Resource. 1: 20-43.

Scott, S. A., Davey, M. P., Dennis, J. S. y Horst, I. 2010. Biodiesel from algae: challenges and prospects.

Current Opinion in Biotechnology. 21(3): 277-286.

Sheedlo, M. 2008. A review of the processes of biodiesel production. Basic Biotechnology. 4: 61-65.

Shen, Y., Yuan, W., Pei, Z. J., Wu, Q. y Mao, E. 2009. Microalgae mass production methods. Transactions of the ASABE. 52(4): 1275–1287.

Sims, R. y Christenson, L. 2011. Production and harvesting of microalgae for wastewater treatment, biofuels and subproducts. Biotechnology Advances. 29(6): 686–702.

Singh, A., Singh-Nigam, P. y Murphy, J. D. 2011.Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology. 102(1): 26-34.

Spolaore, P., Joannis-Cassan C., Duran E., Isambert, A. 2006.Commercial applications of microalgae. J. Biosci. Bioeng.101: 87–96.

Srivastava, A. y Prasad, R. 2000. Triglycerides-based diesel fuels. Renewable & Sustainable Energy. 4(2): 111-133.

Stephanopoulos, G., Fischer, C. R. y Klein-Marcuschamer, D. 2008. Selection and optimization of microbial hosts for biofuels production. Metabolic Engineering. 10(6): 295–304.

Timilsina G.R. y Mevel S. 2010. Biofuels and Climate Change mitigation: A CGE Analysis Incorporating Land-use change. Policy Research Working Paper 5672.World Bank, Washington D.C.

Timilsina, G. R., y Shrestha, A. 2011. How much hope should we have for biofuels?. Energy. 36(4): 2055- 2069.

Tredici, M.R. y Materassi, R. 1992. From open ponds to alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototropic microorganisms. J. Appl. Phycol 4, 221-231

Tredici, M. R. 1999. Bioreactors, photo. In: Flickinger MC, Drew SW (eds.) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Vol 1.Wiley, New York. pp. 395–419.

Ugwu, C. U., Aoyagi, H. y Uchiyama, H. 2008. Photobioreactors for mass cultivation of algae.

Bioresource Technology. 99(10): 4021-4028.

Yeesang, C. y Cheirsilp, B. 2011. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology: 102(3): 3034–3040.

Descargas

Publicado

31-12-2012

Cómo citar

Fernández Linares, L. C., Montiel Montoya, J., Millán Oropeza, A., & Badillo Corona, J. A. (2012). Producción de biocombustibles a partir de microalgas. Revista Ra Ximhai , 8(4 Especial), 101–115. https://doi.org/10.35197/rx.08.03.e2.2012.10.lf

Número

Sección

Artículos científicos