Methodology for estimating dynamic and stationary parameters of re-liquefaction of liquefied petroleum gas (LPG) in storage spheres
DOI:
https://doi.org/10.35197/rx.13.03.2017.09.amKeywords:
hydrocarbon storage, liquefied petroleum gas (LGP), pressure vessels, heat transfer, refrigeration loadAbstract
The temperature difference between the environment and the liquid contained in the liquefied petroleum gas (LPG) storage spheres produces: a net heat flow towards the interior, an increase in the temperature of the stored fuel, partial vaporization of the same and consequently an increase in the storage pressure. To maintain adequate safety conditions, since uncontrolled increases in pressure could cause risk conditions and economic losses, re-liquefaction systems are installed, consisting of self-refrigeration units, which extract the evaporated gas, compress it and condense it again in a closed refrigeration cycle. These systems are frequently designed using heuristic criteria, without taking into account the calculations necessary for their sizing; this results in costly modifications or oversized equipment. This article presents a step-by-step, simple but effective methodology for calculating thermal loads, daily temperature increase rate, and pressure accumulation and recovery times. The methodology was compared with real values by acquiring and processing data during the summer months of 2015 and 2016 from 12 storage spheres at a gas company located in a coastal state of the country, finding that the predicted values for the daily temperature increase rate and recovery times are in statistical agreement with the experimental data.
Downloads
References
ASTM. (1996). Standard Test Method for Analysis of Liquefied Petroleum (LP) Gases and Propane
Concentrates by Gas Chromatography. San Diego: ASTM.
Del Toro, G. (2012, Febrero 10). Filosofía de control de proceso de planta de relicuefacción. Documento de
Planta. Tamaulipas, México.
Helgeson, N., & Sage, B. (1967). Latent heat of vaporization of propane. J. Chem. Eng. Data, 12(1), 47-49. Johnson Controls. (2006). Functional description for refrigeration plant. Chicago: Johnson.
Kumana, J., & Kothari, S. (1982). Predict storage-tank heat transfer precisely. Chemical Engineering, 89(1),
-135.
Mendoza, A., & Rodríguez, C. (2016). Estudio de reestablecimiento de presión en tanques de LPG. Ciudad de México: CRS Ingeniería.
York Refrigeration. (2006). Instruction Manual SMC 104-106-108/TSMC 108 Mk 3. Nueva York: York
Refrigeration.
Yoshihiro, K. (1986). On the boil off rate of liquefied cargo of gas carrirer during a partially loaded voyage.
Journal of the Society of Naval Architects of Japan, 1986(160), 569-578.
Younglove, B., & Ely, J. (1987). Thermophysical Properties of Fluids. II Methane, Ethane, Propane, Isobutane and Normal Butane. J. Phys. Chem. Ref. Data, 16(4), 76-84.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Alexander Mendoza Acosta, Claudia Rodríguez Silva, Hildeberto Hernández Frías
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.