Recognition of defects in wood using a fuzzy neuro network.

Authors

  • Graciela María de Jesús Ramírez Alonso Instituto Tecnológico de Chihuahua.
  • Mario I. Chacón Instituto Tecnológico de Chihuahua

DOI:

https://doi.org/10.35197/rx.01.03.2005.08.GR

Keywords:

neurodiffusal, wood, incorporation method

Abstract

This article describes a neurofuzzy classifier that differentiates between 4 types of defects in wood known as buttons. Visual inspection of these defects by humans has a high degree of complexity since within the same class there are variations in shape, size and color. The features used by the classifier were extracted from wood images using 2D Gabor filters. These filters are widely used for images, where texture is an important factor. To reduce the dimensionality of the feature vector, the Embedding Method was used. The neurofuzzy network was designed from a two-layer Radial Basis Function (RBF) network where the network inputs are fuzzy before starting training. The recognition achieved was 97.05%, which is an acceptable result, taking into account that a human inspector achieves a recognition between 75 and 85%.

Downloads

Download data is not yet available.

References

Bezdek C. James, L. y Pal K.

“Fuzzy models for pattern recognition”. IEEE PRESS. 232 p.

Casanova J. A.

“Multiorientación de imágenes mediante un banco de filtros de Gabor-2D”

Revista Cognitiva. 12 (2): 223-246.

Chin, T. y G. Lee.

“Neural Fuzzy Systems: A Neuro Fuzzy Synergism To Intelligent Systems”.

Editorial Prentice Hall. 354 p.

Kauppinen, H., O. Silven y T. Piirainen.

“Self Organizing Map based user interface for visual surface inspection”. Proc. 11th Scandinavian cofernce on image analysis, Kangerlussuaq, Greenland. pp. 801- 808.

Jouko, L. y Seppo, S.

“Word defect recognition: A comparative study”. Proc. of workshop on Machine vision in advanced production, Oulu, Finland. 112 p.

“Self organizing feature extraction in recognition of wood surface defects and color images”. International Journal of Pattern Recognition and Artificial intelligence. 10 (2): 97-118.

Jouko L. Seppo S. y Markku K.

“Word surface inspection system based on generic visual features”.

International Conference on artificial neural networks ICANN’95 Paris. pp.9-13.

Silven, O., M. Niskanen y H. Kauppinen.

“Electrical engineering” University of Oulu. Department of electrical engineering. (En Línea) disponible en http://www.oulu.fi/research/ imag/gsom/

The Math Works Inc.

“Neural Network Toolbox User’s Guide”. Ver.2. 74 p.

Yaochu, J. Werner, Von S. y Bernhard, S.

“Extracting Interpretable fuzzy rules from RBR neural networks”. Institut Fur Neuroenformaski. Ruhr-Universitat Bochum, Internal Report, January 34 p.

Published

2005-12-31

How to Cite

Ramírez Alonso , G. M. de J., & Chacón, M. I. (2005). Recognition of defects in wood using a fuzzy neuro network. Revista Ra Ximhai , 1(3), 577–589. https://doi.org/10.35197/rx.01.03.2005.08.GR

Issue

Section

Artículos científicos