Modeling the covariance structure between observations of the same individual in tree growth curve models of mesquite (Prosopis laevigata Humb & Bonpl. Ex Willd.) In the rural community of Chinobampo, El Fuerte, Sinaloa

Authors

  • Elvia Nereyda Rodríguez Sauceda
  • Gustavo Enrique Rojo Martínez

DOI:

https://doi.org/10.35197/rx.11.01.e3.2015.13.er

Keywords:

growth curves, mixed models, random coefficients

Abstract

Tree growth curves are modeled from a biological (non-linear functions) or empirical (polynomial functions) point of view. Because growth is assessed by repeated measurements over time on the same tree, the underlying correlation structure must be considered. Covariance models for estimating individual and population tree growth curves are described and compared.

In this work, series from slow-growing tree species from native mesquite forests in the rural community of Chinobampo, El Fuerte, Sinaloa are modeled. Mesquite, ten trees per species and a series of growth ring width per tree were used. The series were smoothed by moving averages to maximize the trend due to biological growth.

The covariance structure between observations of the same individual was modeled using the compound symmetry and autoregressive models for the covariance submatrix between the corresponding error terms and also by incorporating random effects in the model. The adjustments were made within the framework of the mixed linear models and compared from the corresponding likelihood functions. The model with random effects associated to each parameter of a second-order polynomial was the most efficient in estimating growth in both species. The incorporation of random effects allows to take into account the high variability of growth commonly observed between individuals of a species in natural forests.

Downloads

Download data is not yet available.

References

Azen, S. P. y A. A. Afifi. 1972. Asymptotic and small-sample behavior of estimated Bayes rules for classifying time-dependent observations. Biometrics, 28, 989-998.

Campbell, C.L. y Madden, L.V. 1990. Introduction to plant disease epidemiology. A Whiley Interscience publication, 6, 184-188.

Crowder, M. J. y D. J. Hand. 1990. Analysis of Repeated Measures. London: Chapman And Hall. Frittz, H. 1976. Tree rings and climate. Academic Press.New York,320 p.

Giménez, A. M. (1998). Influencia de la Edad sobre caracteres anatómicos y el crecimiento de Schinopsis quebracho colorado Engl., Anacardiaceae. Tesis Doctoral.

Giménez, A.M.; Ríos N.A.(1999). Crecimiento de Schinopsis Quebracho colorado (Schlecht.) Barkl et meyer, Anacardiaceae. Madera y Bosques 5(2). 35-51.

Graybill, F. A. 1976. Theory and Application of the Linear Model. Wadsworth Publishing Company.

pp.

Grizzle, J. E. y D. M. Allen. 1969. Analysis of growth and dose response curves. Biometrics, 25,357- 381.

Hand D.J. y Taylor C.C. 1987. Multivariate analysis of variance and repeated Measures. Chapman and Hall, London.

Harville, D. A. 1977. Maximum likelihood approaches to variance component estimation and to related problems. J. Amer. Stat. Assoc. 72:320-340.

Hayman, B. I. 1960. Maximum likelihood estimation of genetic components of variation.

Biometrics 16, 369-381.

Jenrich, R. L. y M. D. Schluchter.1986. Unbalanced repeated-measures models with structures covariance matrices. Biometrics 42:805-820

Juárez de Galindez,M.2001. Modelización estadística de curvas de crecimiento de árboles en bosques nativos: Quebracho colorado, Quebracho blanco y Algarrobo blanco. Tesis para optar al grado académico de Magíster.

Karlin, U., Catalán, L., Coirini, R. 1994. La Naturaleza y el Hombre en el Chaco Seco. Proyecto GTZ, Salta, 163 p.

Khuri, A. I.; T. Mathew y B. K. Sinha. 1998. Statistical tests for mixed linear models. Wiley series in Probability and Statistics. John Wiley & Sons, Inc. New York. 352pp.

Lencinas, J. D. 1993. Análisis epidométrico de árboles dominantes de Quebracho colorado y estudio de la estructura del rodal en el Chaco Seco. Trabajo Final de la carrera de Ingeniería Forestal.

Lindstrom, M. y Bates, D. 1990. Nonlinear mixed effects models for repeated measures data.

Biometrics 46, 673-687.

Littell, R. C.; G. A. Milliken; W.W. Stroup y R. D. Wolfinger. 1996. SAS System for Mixed Models.

Cary, N.C.: SAS Institute Inc.633pgs.

Moglia de Lugones, J. G. 1999. Variabilidad de los caracteres anatómicos del leño de Aspidosperma quebracho blanco (Schelkt), Apocinácea. Tesis doctoral.

Moglia de Lugones, J. G. y C. López. 1995. Crecimiento radial en Aspidosperma quebracho blanco.

Informe anual. CICYT. UNSE.

Patterson, H. D. y R. Thompson. 1971. Recovery of interblock information when block sizes are unequal. Biometrika 58, 545-554.

Perpiñal, E., Balzarini, M., Catalán, L., Pietrarelli, L., Karlin, U. 1995. Edad de Culminación del crecimiento en Prosopis flexuosa D. C. en el Chaco Arido Argentino. INIA, 4 (1), 45-55.

Sakamoto, Y.; M. Ishiguro y G. Kitagawa. 1987. Akaike Information Criterion Statistics. KTK Scientific Publisher, Tokyo, Japan.

Searle, S. R.; G. Casella y C. H. Mc Culloch. 1992. Variance components. Wiley, New York.

Vanclay, J. (1994). Modelling Forest Growth and Yield. Applications to mixed Tropical Forests. Cab International, 311 p.

Vonesh, E. y Chinchilli, V. 1997. Linear and nonlinear models for the analysis of repeated measurements. Statistic textbooks and Monographs. Vol. 154. Ed. Marcel Dekker, Inc. New York, 560 p.

Wolfinger, R. D. y O’Connell, M. 1993. Generalized linear mixed models: a pseudo-likelihood approach. J. Statist. Comput. Simul. 48:233-243.

Zeger, S. L.; K. Y. Liang y P. S. Albert. 1988. Models for longitudinal data: A generalized estimating equation approach. Biometrics 44:1049-1060.

Published

2015-12-31

How to Cite

Rodríguez Sauceda, E. N., & Rojo Martínez, G. E. (2015). Modeling the covariance structure between observations of the same individual in tree growth curve models of mesquite (Prosopis laevigata Humb & Bonpl. Ex Willd.) In the rural community of Chinobampo, El Fuerte, Sinaloa. Revista Ra Ximhai , 11(5 Especial), 223–235. https://doi.org/10.35197/rx.11.01.e3.2015.13.er

Issue

Section

Artículos científicos