Biorational insecticides for the control of mosquitoes and black flies in Sinaloa

Authors

  • Cipriano García Gutiérrez
  • Rosa Luz Gómez Peraza
  • Claudia E. López Aguilar
  • Arturo León Váldez

DOI:

https://doi.org/10.35197/rx.08.03.e2.2012.05.cg

Keywords:

biorational, biological control, simulides, A. albimanus, C. quinquefasciatus

Abstract

In Sinaloa, Mexico, the presence of mosquitoes is a major health problem, since each spring-summer season there are various species, among which the following stand out: Aedes aegypti (Linneus), Anopheles albimanus (Wiedemann), Culex quinquefasciatus (Say) and black flies of the Simulidae family. The combat of larvae and adults of these insects is commonly carried out with chemical insecticides, so the use of biorational insecticides for the control of these insects is novel, because they have a low impact on the environment. In this work, the different biorational insecticides and their biological effect (inhibitor, repellent, larvicide, adulticide) that can be used to combat the different stages of the development of these insects are presented. In addition, the progress of a study on the effectiveness of neem, garlic, cinnamon, basil and cypermethrin extracts at low doses (0.25, 0.5 and 1 ml/L) for the control of blackflies in the municipality of El Fuerte, Sinaloa, are shown. Due to their mode of action, the biorationals that can be used to control these insects are; Spinosad and Bacillus thuringiensis (Berliner) var. israeliensis for larvae, and for adults Spinosad and Beauveria bassiana (Vuill.); as well as garlic, neem, cinnamon and basil extracts for both stages. The preliminary results of the biorational effectiveness study showed that the application of low doses of cypermethrin and aqueous extracts of the plants, managed to reduce the rates of larvae in breeding sites and the population infestation of mosquitoes and black flies in tourist sites, reducing the discomfort caused by these insects in the study site.

Downloads

Download data is not yet available.

References

Abdelouaheb, A., Nassima R., Noureddine S. 2009. Larvicidal activity of a neem tree extract (Azadirachtin) against mosquito larvae in the Republic of Algeria. Biological Sciences. 2: 15-22.

Arrivillaga, J. y R. Barrera. 2004. Food as a limiting factor for Aedes aegypti in water-storage containers. Vector Ecology. 29(1): 11-20.

Badii, M. H., J. Landeros, 2007. Ecología e historia del dengue en las Américas. Good Conscience. 2(2): 309-333.

Banchio, E., Valladares G., Defago M., Palacios S., Carpinella C. 2003. Effects of Melia azedarach (Meliaceae) fruit extracts on the leafminer Liriomyza huidobrensis (Diptera: Agromyzidae): assessment in laboratory and field experiments. Ann. Appl. Biol. 143, 187–193.

Bond, J.G., Marina C.F. y Williams, T. 2004. The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Medical and Veterinary Entomology 18, 50–56.

Cavalcanti, E., de Morais S., Ashley A., William P. 2004. Larvicidal activity of essential oils from brazilian plants against Aedes aegypti L. Memórias do Instituto Oswaldo Cruz 99, 541–544.

Eiras, A. E. y M. C. Resende. 2009. Preliminary evaluation of the “Dengue-MI” technology for Aedes aegypti monitoring and control. Cad. Saúde Pública 25(1): S45-S58.

Fenwick, G. R, Hanley A. B. 1985. The genus Allium. Part 1. CRC Crit Rev Food Sci Nutr.

:199-271.

Fuentes-Contreras, E., Basoalto E., Sandoval C., Pavez P., Leal C., Burgos R. 2007. Evaluación de la eficacia, efecto residual y de volteo de aplicaciones en pretrasplante de insecticidas nicotinoides y mezclas de nicotinoide-piretroide para el control de Myzus persicae (Hemiptera: Aphididae) en tabaco. Agricultura Técnica. 67(1):16-22.

Gajmer, T., Singh R., Saini R.K., Kalidhar S.B. 2002. Effect of methanolic extracts of neem (Azadirachta indica A. Juss) and bakain (Melia azedarach L.) seeds on oviposition and

egg hatching of Earias vittella (Fab.) (Lepidoptera: Noctuidae). J. Appl. Entomol. 126, 238-243.

García, G. C. y Tamez, G. P. 2012. Mercado de bioinsecticidas en México. Curso de agricultura orgánica y sustentable. Fundación Produce Sinaloa. pp: 99-114.

García, R., B.A. Federice., I. M. May., M. S. Mulla and C. H. Schaefer. 1980. Bti a potent new biological weapon. Calif. Agric. 34 (3): 18-19.

Guglielmone, A., Castelli, M., Volpogni, M., Medus, P., Anziani, O., Mangold, A. 2001. Comparación de la concentración letal 50 de diazinón y cipermetrina para Haematobia irritans (Diptera: Muscidae) entre áreas de producción de leche o carne de Santa Fe y Entre Ríos, Argentina. Rev. Med. Vet. Buenos Aires. 82, 209-211.

Jang, Y.S., Kim M.K, Ahn Y.J, Lee H.S. 2002. Larvicidal activity of brazilian plants against Aedes. aegypti and Culex pipiens pallens (Diptera: Culicidae). Agric. Chem. Biotechnol. 44, 23-26.

Halim, A. A. S. 2008. Efficacy of Zingiber officinale on third stage larvae and adult fecundity of Musca domestica and Anopheles pharoensis. J. Egypt Soc. Parasitol. 38: 385-392.

Harding, J. S., C. Brown. 2007. Distribution and habitats of mosquito larvae in the Kingdom of Tonga. Australian Journal of Entomology. 46: 332-338.

Laakso I, Seppänen-Laakso T, Herrmann-Wolf B, Kühnel N, Knobloch K.1990. Biology and chemistry of active natural substances. Plant Med. 1990;56(6): 493-698.

Lacey, L. A. 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J. Am. Mosquito Contr. pp. 133–163.

Malkeja A. N, Bailey J. M.1990. Antiplatelet constituents of garlic and onions. Agent Actions.

:360-363.

Mc Call, P. J., M. D. Wilson., B. D. Dueben., B. M. de Clare Bronsvoort and R. R. Heath. 1997a. Similarity in oviposition aggregation pheromone composition within the Simulium damnosum (Diptera:Simuliidae) species complex. Bull. Entomol. Res. 87:609-616.

Mc Call, P. J., R. R. Heath., D. Dueben and M. D. Wilson. 1997b. Oviposition pheromone in the Simulium damnosum complex: biological activity of chemical fractions from gravid ovaries. Physiol. Entomol. 22:224-230.

Pérez, D. D, Iannacone O. I. 2008. Mortalidad y repelencia en Eupalamides cyparissias (Lepidoptera: Castniidae), plaga de la palma aceitera Elaeis guineensis, por efecto de diez extractos botánicos. Rev Soc Entomol Argent. 67(1-2):41-8.

Periago, M. R. y M. G. Guzmán. 2007. Dengue y dengue hemorrágico en las Américas. Rev.

Panam. Salud Pública. 21(4): 187-191.

Polack, A. and M. Mitidieri. 2002. Producción de tomate diferenciado. Protocolo preliminar de manejo integrado de plagas y enfermedades. Información para extensión. 16 pp. INTA San Pedro, Argentina.

Prajapati, V., A..K. Tripathi., K..K. Aggarwal and S. P. Khanuja. 2005. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol. 96: 1749 1757.

Rodríguez, P., M. A., N. L. Valdivieso-López and P. J. Mc-Call. 2003. Aggregated oviposition in Simulium ochraceum s. l. (Diptera:Simuliidae), an important Neotropical vector of Onchocerca volvulus. Ann. Trop. Med. Parasitol. 97:203-207.

Schulz, K. H, Karma M. 1986. Periodic reproduction of Onchocerca volvulus. Parasitol Today.

: 284-286.

Wandscheer, C. B, Duque J. E, da Silva MAN., Fukuyama Y., Wohlke J.L., Adelmann J., Fontana J.D. 2004. Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti. Toxicon. 44, 829-835.

Williams, C. R. and K. J. 2008. The allee effect in site choice behavior of egg-laying dengue vector mosquitoes. Tropical Biomedicine. 25(2): 140-144.

Published

2012-12-31

How to Cite

García Gutiérrez, C., Gómez Peraza, R. L., López Aguilar, C. E., & León Váldez, A. (2012). Biorational insecticides for the control of mosquitoes and black flies in Sinaloa. Revista Ra Ximhai , 8(4 Especial), 47–55. https://doi.org/10.35197/rx.08.03.e2.2012.05.cg

Issue

Section

Artículos científicos