Organic – mineral and organic fertilization in strawberry cultivation (Fragaria x ananasa Duch.) under greenhouse conditions

Authors

  • Carlos Osvaldo Romero Romano
  • Juventino Ocampo Mendoza
  • Engelberto Sandoval Castro
  • J. Refugio Tobar Reyes

DOI:

https://doi.org/10.35197/rx.08.03.e1.2012.04.cr

Keywords:

Fertilización química, regulador de crecimiento, ácidos fúlvicos, vermicomposta

Abstract

A good combination of organic and mineral fertilizers can allow a reduction in the use of agrochemicals, benefiting the environment and the health of consumers, by obtaining safe crops and products with lower chemical residue content. In the present work, the effect of organic and organic-mineral fertilization on the cultivation of strawberry cv. Festival will be assessed, using a 3x23 factorial treatment design with a total of 24 treatments in a randomized block experimental design with four replications, under greenhouse conditions in Atlixco, Puebla. The factors and their study levels were: chemical fertilization (FQ), at three levels of N-P2O5–K2O 0-0-0, 45-20-20 and 90-35-35 kg ha-1; commercial organic nutrient (Activador QF®) made with fulvic acids (AF) at a concentration of (13.58%) with study levels 0 and 450 ml ha-1; The experiments were carried out using commercial plant growth regulator (GR) (Biozyme®, composed of 78.87% plant extracts and phytohormones, and 1.86% microelements) at 0 and 20 l ha-1 and bovine manure vermicompost (V) at 50 and 100 g/pot. The experiment was divided into two periods: February-May and June-September 2011. The treatments were applied on the soil (GR and V) and on the leaves (AF and GR). In both stages, the treatments were applied at 10, 40 and 60 days after transplanting. The variables analyzed were the number of stolons, stolon length, polar and equatorial diameters, number and weight of fruits per week, period, and the total of the two periods. The number of ripe fruits was counted twice a week, the polar and equatorial diameters were measured, and the fruits were weighed. Every 8 days, from the formation of the first stolons, they were counted and measured. Statistical analysis was performed using the SAS program (SAS, 2004). In the period February-May, the FQ50-AF1-RC1-V50 treatment presented statistical differences (Tukey, p ≤ 0.05%) for the variables polar diameter (2.95 cm), equatorial diameter (3.76 cm), fruit weight per week (11.31 g) and period (135.69 g). In the period June-September, FQ50-AF1-RC1-V50 showed statistical differences for polar diameter (2.93 cm); FQ100-AF0-RC1-V50 and FQ100-AF1-RC1-V100 registered significant differences respectively for fruit weight per week (7.08 g) and period (73.84 g). FQ100-AF0-RC1-V50 achieved higher values ​​for total fruit weight (189.42 g). In both periods, organic-mineral fertilization showed better results, compared to organic fertilization.

Downloads

Download data is not yet available.

References

Arancon, N., Edwards, C., Bierman, P., Welch, C. and J. Metzer, J. 2004. Influence of vermicomposts on field strawberries: effect on growth and yields. Bioresource Technology 93: 145–153.

Arancon, N., Edwards, C. and Bierman, P. 2006. Influences of vermicomposts on field strawberries: effects on soil microbial and chemical properties. Bioresource Technology 97: 831–840.

Armenta-Bojorquez, A., García-Gutierrez, C., Camacho-Báez, J., Apodaca-Sánchez, M., Gerardo-Montolla,

L. y Nava-Pérez, E. 2010. Biofertilizantes en el desarrollo agrícola de México. Ra Ximhai. 6 (1): 51-56.

Atiyeh, R., Lee, S., Edwards, C., Arancon, N. and Metzger, J. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology 84: 7-14.

Bashan, Y., and Holguin, G. 1998. Proposal for the division of plant growth- promoting rhizobacteria into two classifications: biocontrol PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30: 1225-1228.

Eghball, B., D. Ginting and J. E. Gilley. 2004. Residual effects of manure and compost applications on corn production and soil properties. Agronomy Journal 96: 442-447.

Gaskell, M. 2004. Nitrogen availability, supply and sources in organic row crops. California Conference on Biological Control CCBC IV. Proceedings of California Organic Production and Farming in the New Millennium: A Research Simposium. International House, Berkeley, CA. p. 13-20.

Hashemimajd, K., M. Kalbasi, A. Golchin, H. Shariatmandari. 2004. Comparison of vermicompost and compost as potting media for growth of tomatoes. In: Journal of Plant Nutrition. 27: 1107-1123.

Kannangara, T., R.S. Utkhede, J. W. Paul y Z. K. Punja. 2000. Effects of mesophilic and thermophilic composts on suppression of Fusarium root and stem rot of greenhouse cucumber. Can. J. Microbiol. 46: 1021-1028.

Klamkowski, K. and Treder, W. 2008. Response to drought stress of three strawberry cultivars grown under greenhouse conditions. Journal of Fruit and Ornamental Plant Research. 16: 179-188.

Lucy, M., Reed, E., Glick, B. R. 2004. Applications of free living plant growth-promoting rhizobacteria.

Antonie Van Leeuwenhoek. 86: 1-25.

Larson, K. D. 2000. Comportamiento y manejo de la fresa: Desarrollados de programas de producción para máxima calidad y rendimiento en México. pp. 7-21. En J. Z. Castellanos y F. Guerra O’Hart (eds). Memorias Simposium Internacional Fresa. Zamora, Michoacan, México.

Litterick, A. M., L. Harrier, P. Wallace, C. A. Watson and M. Wood. 2004. The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production. Critical Reviews in Plant Science, 23 (6): 453-479.

Ma, Y., Zhang, J. Y., Wong, M. H. 2003. Microbial activity during composting of anthracenecontaminated soil. Chemosphere 55: 1505-1513.

McGinnis, M., Warren, S., and Bilderback, T. 2004. Vermicompost – Potential as Pine Bark Amendment for the Nursery. Nursery Short Course. North Carolina State University. 8-10 pp.

Moreno R. A., Valdés P. M. y Zarate L. T. 2005. Desarrollo de tomate en sustratos de vermicompost/arena bajo condiciones de invernadero. Agricultura Técnica 65 (1): 26-34.

Morgan L. 2002. Producción intensiva de fresa. Productores de Hortalizas 11 (8): 14-17.

Pereira, M. G. and Zezzi-Arruda, M. A. 2003. Vermicompost as a natural adsorbent material: Characterization and potentialities for cadmium adsorption. Journal of the Brazilian Chemical Society 14 (1): 39-47.

Planes L. M., Calderón A. J., Terry L. A., Figueroa S. I., Utria B. E. y Abadis L. 2004. La biofertilización como herramienta biotecnológica de la agricultura sostenible. Revista Chapingo Serie Horticultura 10 (1): 5-10.

DOUE. Diario Oficial de la Unión Europea. 2002. Reglamento (CE) no 843/2002 de la Comisión, de 21 de mayo de 2002 por el que se establecen las normas de calidad para las cerezas y para las fresas.

Rajbir, S., R. Sharma, Satyendra K., R. K. Gupta, R. T. Patil. 2008. Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresource Technology 99: 8507–8511

SAGARPA. 2009. Sistema de Información Agropecuaria de Consulta – SIACON, en línea http://www.sagarpa.gob.mx, consultada el 4 de febrero de 2011

SAS version 9.0. SAS, Institute Inc., Cary NC., USA.

Taylor D. R. 2002. The physiology of flowering in strawberry. Acta Horticulturae 567: 245-251.

Welke, S. E. 2004. The effect of compost extract on yields of strawberries and the severity of Botrytis cenerea. Journal of Sustainable Agriculture 25 (1): 57-68.

Published

2012-12-31

How to Cite

Romero Romano, C. O., Ocampo Mendoza, J., Sandoval Castro, E., & Tobar Reyes, J. R. (2012). Organic – mineral and organic fertilization in strawberry cultivation (Fragaria x ananasa Duch.) under greenhouse conditions. Revista Ra Ximhai , 8(3 Especial), 41–49. https://doi.org/10.35197/rx.08.03.e1.2012.04.cr

Issue

Section

Artículos científicos