Proteomics of the ripening of blackberry (Rubus sp.) fruits grown in Mexico, a first approximation

Authors

  • Ana Tztzqui Chávez Bárcenas
  • Cristina Alonso Ojeda
  • Pedro Antonio García Saucedo

DOI:

https://doi.org/10.35197/rx.08.03.e1.2012.15.ac

Keywords:

proteins, denaturing electrophoresis, two-dimensional electrophoresis

Abstract

Blackberry production in Mexico has increased by 200% in the last decade. The main varieties used have been introduced and their establishment under the climatic conditions of Mexico has required considerable adaptations to the agronomic management observed in the regions of origin of these varieties. The essential challenge of managing this product is based on the intrinsic characteristics of its soft fruits and its short shelf life, so knowledge of its ripening process under the growing conditions in Mexico is essential to successfully manipulate and improve the productivity and quality of the fruits until their final destination. With the intention of initially addressing this problem, the objective of this work was to establish the conditions for protein analysis protocols that allow the evaluation of protein components in blackberry fruits during ripening. For this, six stages of fruit ripening of the commercial variety ‘Brazos’ were identified (considering from green and underdeveloped fruits to fruits ripe for consumption), a protein extraction method was selected and a protein profile was performed by electrophoresis under denaturing conditions. In addition, the requirements for two-dimensional electrophoresis (2-DE) of the extracts obtained were established, evaluating the isoelectric focusing conditions and staining methods. According to the results obtained, it was determined to use 400 µg of total protein in 7 cm IPG strips with a pH range of 3 to 10, at a maximum voltage of 50,000 V and staining with Coomassie blue. Using the KODAK MI software version 4.5, a preliminary analysis of the distribution and abundance of the peptides expressed in the six stages of ripening was performed, observing that stage 2 presented the highest number of peptide spots (158), that the highest percentage of peptide spots in all stages were presented in a pH range of 5.0 to 6.9 and molecular weight of 30 to 50 kDa. Four spots of similar intensity during ripening were identified; suggesting their constitutive expression, three of decreasing intensity; which could be involved in initial processes of fruit growth, four that are induced during ripening and six of oscillating intensity.

Downloads

Download data is not yet available.

References

Bianco, L., L. López, A. G. Scalone, M. Di Carli, A. Desiderio, E. Benvenuto, G. Perrotta. 2009. Strawberry proteome characterization and its regulation during fruti ripening and in different genotypes. J Proteomics 72 (4):586-607.

Biggs, M., R. Harriman, A. Handa. 1986. Changes in gene expression during tomato fruit ripening.

Plant Physiol. 81:395-403.

Bolmgren, K. y O. Eriksson. 2010. Seed mass and the evolution of fleshy fruits in angiosperms. Oikos 119:707-718.

Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-bindingn. Analytical Biochem. 72: 248-254.

Cánovas, F. M., E. Dumas-Gaudot, G. Recorbet, J. Jorrin, H. P. Mock, M. Rossignol. 2004. Plant Proteome Analysis. Proteomics 4: 285–298

Cantu, D., A. R. Vicente, L. C. Greve, F. M. Dewey, A. B. Bennett, J. M. Labavitch, A. L. T. Powell. 2008. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proc Natl Acad Sci 105:859-864.

Chávez-Franco, S. H., E. Vázquez-García, C. Saucedo-Veloz. 2000. Propiedades biomecánicas de frutos de zarzamora. Agrociencia 34:329-335.

Cheng, G. W. y P. J. Breen. 1991. Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116:865-869.

Esquivel, A. E., G. J. Morales, C. A. L. Ortíz, G. M. V. Rodríguez, V. A. Ronquillo, S. A. C. Sánchez, D.

A. R. Rodríguez, M. S. H. Guzmán, L. M. R. Mendoza, L. D. Hernández. 2008. Análisis de las Propiedades Fisicoquímicas de la Zarzamora en las Variedades Brazos, Cherokee y Tupy de la Zona Alta de Michoacán. Tecnológico de Celaya. Depto. Ingeniería Bioquímica. www.respyn.uanl.mx/especiales/2008/ee-08-2008/.../A027.pdf. Consultado el 20 de agosto de 2011.

Faurobert, M., C. Mihr, N. Bertin, T. Pawlowski, L. Negroni, N. Sommerer, M. Causse 2007. Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol. 143(3):1327-1346.

Gambetti, P., L. Autilio Gambetti, S. C. Papasozomenos. 1981. Bodian's silver method stains neurofilament polypeptides. Science. 213 (4515):1521–1522.

Görg, A., W. Weiss, M. J. Dunn. 2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics; 4: 3665–3685.

Hummer, E. K. 1996. Rubus diversity. HortScience. 31(2):182–183.

Inforural, 2010. Zarzamora detona progreso. http://www.inforural.com.mx. Michoacán. 26 de enero de 2010. Consultado el 18 de noviembre de 2011.

Jones, C. S., H. V. Davies, M. A. Taylor. 2000. Profiling of changes in gene expression during raspberry (Rubus idaeus) fruit ripening by application of RNA fingerprinting techniques. Planta 211:708-714.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Manning, K. 1998. Isolation of a set of ripening-related genes from strawberry: their identification and possible relationship to fruit quality traits. Planta 205:622–631.

Manrique Klinge K. 2001. Nociones del Manejo de Post-cosecha. Departamento de Mejoramiento y Recursos Genéticos. Centro Internacional de la Papa. 1-9 pp.

Matas, A. J., N. E. Gapper, M.-Y. Chung, J. J. Giovannoni, J. K. C. Rose. 2009. Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr Opin Biotechnol 20:197-203.

Mehta, R. A., T. Cassol, N. Li, N. Ali, A. K. Handa, A. K. Mattoo. 2002. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nat Biotechnol 20:613-618.

Moyano, E., I. Portero-Robles, N. Medina-Escobar, V. Valpuesta, J. Muñoz-Blanco, J. L. Caballero. 1998. A fruit-specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process. Plant Physiol. 117:711-716.

Muñoz, R. M. y M. R. Juárez. 1995. El mercado mundial de la frambuesa y zarzamora. Chapingo, Mex. http://www.infoaserca.gob.mx/proafex/FRAMBUESA_Y_ ZARZA.pdf Consultado el 10 de enero de 2012.

Neily, M. H., C. Matsukura, S. Bernillon, C. Deborde, A. Moing, Y.-G. Yin, T. Saito, K. Mori, E. Asamizu, D. Rolin, T. Moriguchi, H. Ezura. 2011. Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol. 168:242-252.

Nilo, R., C. Saffie, K. Lilley, R. Baeza-Yates, V. Cambiazo, R. Campos-Vargas, M. González, L. A. Meisel, J. Retamales, H. Silva, A. Orellana. 2010. Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics, 11:43

Perkins-Veazie, P., J. K. Collins, J. R. Clark. 1996. Cultivar and maturity affect postharvest quality of fruit from erect blackberries. HortScience 31:258–261.

Perkins-Veazie, P., J. R. Clark, D. J. Huber, E. A. Baldwin. 2000. Ripening physiology in ‘Navaho’ thornless blackberries: color, respiration, ethylene production, softening, and compositional changes. J. Amer Soc Hort Sci 125:357-363.

Piña-Dumoulín, G., V. V. C. Saucedo, E. A. Ayala, L. A. Muratalla. 2001. Atmósferas controladas para combatir daños postcosecha en Zarzamora (Rubus sp.). Rev. Fac. Agron. (LUZ). 18: 87-105

Ramaschandra, G. S., C. Stander, D. Jacobson, B. Ndimba, M. A. Vivier. 2011. Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells. PLoS ONE 6(2): e14708.doi:10.1371/journal.pone.0014708.

Robinson, S. P. y C Davies. 2000. Molecular biology of grape berry ripening. Aus J Grape Wine Res 6:175-188.

Rosas, C. F. F. 2008. Proteómica de la maduración de tunas con características contrastantes de maduración. Tesis de Maestría en Ciencias. Centro de Investigación y de Estudios Avanzados del

I.P.N. Unidad Irapuato.

SAGARPA. 2002. Estadísticas de bayas. Producción de zarzamora en Michoacán. Departamento de Hortofrutícolas. México D.F. Consultado el 9 de septiembre de 2011.

SAGARPA. 2009. Registra México aumento en producción de Zarzamora y Frambuesa, 020/05, México, D.F. Consultado el 13 de noviembre de 2011.

Sarry, J.-E., N. Sommerer, F.-X. Sauvage, A. Bergoin, M. Rossignol, G. Albagnac, C. Romieu. 2004. Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics 4: 201-215.

Seymour, G, M. Poole, K. Manning, G. King. 2008. Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol. 11:58-63.

SIAP. 2011. Cierre de la producción agrícola por cultivo. http://www.siap.gob.mx. Consultado el 23 de noviembre de 2011

SNIIM. 2008. Sistema Nacional de Información de Mercados. http://www.economia- sniim.gob.mx/sicia/VerAgr.htm. Consultado el 22 de febrero de 2012.

Srivastava, L. 2002. Plant growth and development. Academic Press, San Diego, California. Plant Physiology. Sinauer Associates, Inc. Publ. Sunderland, Massachusetts. 772p.

Sun, L. Y. Sun, M. Zhang, L. Wang, J. Ren, M. Cui, Y. Wang, K. Ji, P. Li, P. Chen, S. Dai, C. Duan, Y. Wu, P. Leng. 2011. Supression of 9-cis-epoxycarotenoid digoxygenase (NCED), wich encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomatoes. Plant Physiol. Preview. Published on November 22, 2011, as DOI:10.1104/pp.111.186866.

Published

2012-12-31

How to Cite

Chávez Bárcenas, A. T., Alonso Ojeda, C., & García Saucedo, P. A. (2012). Proteomics of the ripening of blackberry (Rubus sp.) fruits grown in Mexico, a first approximation. Revista Ra Ximhai , 8(3 Especial), 143–157. https://doi.org/10.35197/rx.08.03.e1.2012.15.ac

Issue

Section

Artículos científicos