Aspectos asociados al diseño de envases inteligentes de alimentos y su relación con el medio ambiente: una revisión sistemática
DOI:
https://doi.org/10.35197/rx.20.02.2024.08.gsPalabras clave:
envases inteligentes, diseño, industria de alimentos, biodegradableResumen
Los envases utilizados en alimentos tienen la capacidad de mejorar la calidad de los productos debido a que conservan y, comunican el valor y composición nutricional. Por otro lado, los envases inteligentes permiten optimizar su funcionalidad, mejorar la vida útil y abordar problemas de sostenibilidad. El objetivo de la revisión sistemática es analizar los aspectos asociados al diseño de envases inteligentes utilizados en la industria de alimentos y como se relaciona con la preservación del medio ambiente, a partir de la literatura científica en el período 2017-2023. Las fuentes de información se recopilaron en la base de datos Scopus a partir de la ecuación de búsqueda que contenía términos asociados a envases inteligentes, industria y medio ambiente. En la primera búsqueda se tuvo 4540 artículos, de los cuales mediante el método PRISMA se seleccionaron 55 artículos. Además, se encontró que más del 20% de los registros provenían de China, seguido de Italia y Brasil, incrementándose a partir del 2020, siendo los descriptores más frecuentes: “packaging materials” y “food packaging”. El 50% de artículos seleccionados abordan temas sobre los beneficios ambientales que tiene el diseño de los envases inteligentes como el uso de materiales reciclables y/o residuos agroindustriales. Además, los aspectos más relevantes a tener en cuenta durante el diseño son la biodegradabilidad, la compatibilidad con alimentos y el costo. En conclusión, el uso de tecnologías avanzadas y residuos orgánicos en la producción de envases mejora la calidad del producto y la experiencia del consumidor, asimismo promueve una gestión sostenible.
Descargas
Citas
Acosta, I., Marrero, F. y Espinosa, J. U. (2020). La economía circular como contribución a la sostenibilidad en un destino turístico cubano de sol y playa. Estudios y Perspectivas en Turismo, 29(2), 406–425. https://www.redalyc.org/journal/1807/180763168005/180763168005.pdf
Alpaslan, D., Dudu, T. E., Şahiner, N., y Aktaş, N. (2020). Synthesis and preparation of responsive poly(Dimethyl acrylamide/gelatin and pomegranate extract) as a novel food packaging material. Materials Science and Engineering C, 108(October 2018), 110339. https://doi.org/10.1016/j.msec.2019.110339
Ardila-Diaz, L. D., de Oliveira, T. V., y Soares, N. de F. F. (2020). Development and evaluation of the chromatic behavior of an intelligent packaging material based on cellulose acetate incorporated with polydiacetylene for an efficient packaging. Biosensors, 10(6). https://doi.org/10.3390/BIOS10060059
Bala, A., Laso, J., Abejón, R., Margallo, M., Fullana-i-Palmer, P., y Aldaco, R. (2020). Environmental assessment of the food packaging waste management system in Spain: Understanding the present to improve the future. Science of the Total Environment, 702, 134603. https://doi.org/10.1016/j.scitotenv.2019.134603
Bansal, S., Singh Kushwah, S., Garg, A., y Sharma, K. (2023). Utilization of plastic waste in construction industry in India – A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2023.03.693
Blettler, M. C. M., Agustini, E., Abrial, E., Piacentini, R., Garello, N., Wantzen, K. M., Vega, M. G., y Espinola, L. A. (2023). The challenge of reducing macroplastic pollution: Testing the effectiveness of a river boom under real environmental conditions. Science of the Total Environment, 870(January), 1–8. https://doi.org/10.1016/j.scitotenv.2023.161941
Carfí, D., y Donato, A. (2022). Plastic-Pollution Reduction and Bio-Resources Preservation Using Green-Packaging Game Coopetition. Mathematics, 10(23), 1–20. https://doi.org/10.3390/math10234553
Chen, X., Kroell, N., Dietl, T., Feil, A., y Greiff, K. (2021). Influence of long-term natural degradation processes on near-infrared spectra and sorting of post-consumer plastics. Waste Management, 136(July), 213–218. https://doi.org/10.1016/j.wasman.2021.10.006
Chen, Z., Mei, Y., Liu, S., Li, H., Liu, L., Lei, X., Zhou, Y., y Gao, X. (2021). Reliability in Electronic Packaging: Past, Now and Future. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 57(16), 248–268. https://doi.org/10.3901/JME.2021.16.248
Ciravegna, E. (2020). Repensar los envases en tiempos de crisis: implicancias éticas y enfoque sistémico en el Diseño de Packaging. RChD: creación y pensamiento, 5(9), 1. https://doi.org/10.5354/0719-837x.2020.59536
Contessa, C. R., de Souza, N. B., Gonçalo, G. B., de Moura, C. M., da Rosa, G. S., y Moraes, C. C. (2021). Development of active packaging based on agar-agar incorporated with bacteriocin of lactobacillus sakei. Biomolecules, 11(12), 1–9. https://doi.org/10.3390/biom11121869
da Silva Filipini, G., Romani, V. P., y Guimarães Martins, V. (2020). Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocolloids, 109(May). https://doi.org/10.1016/j.foodhyd.2020.106139
Daniele, R., Armoni, D., Dul, S., y Alessandro, P. (2023). From Nautical Waste to Additive Manufacturing: Sustainable Recycling of High-Density Polyethylene for 3D Printing Applications. Journal of Composites Science, 7(8). https://doi.org/10.3390/jcs7080320
Dirpan, A., Hidayat, S. H., Djalal, M., Ainani, A. F., Yolanda, D. S., Kasmira, Khosuma, M., Solon, G. T., y Ismayanti, N. (2023). Trends over the last 25 years and future research into smart packaging for food: A review. Future Foods, 8(August), 100252. https://doi.org/10.1016/j.fufo.2023.100252
Ducki, K., Orynycz, O., Wasiak, A., Gola, A., y Mieszkalski, L. (2022). Potential Routes to the Sustainability of the Food Packaging Industry. Sustainability (Switzerland), 14(7). https://doi.org/10.3390/su14073924
Evyan, Y. C. Y., Liew, M. S., Patricia, J., Chong, M. Y., y Zairul, Z. A. (2022). Biodegradable food packaging and film: a short review. Food Research, 6, 1–12. https://doi.org/10.26656/fr.2017.6(S1).007
Fahim, I. S., Chbib, H., y Mahmoud, H. M. (2019). The synthesis, production y economic feasibility of manufacturing PLA from agricultural waste. Sustainable Chemistry and Pharmacy, 12(March), 100142. https://doi.org/10.1016/j.scp.2019.100142
Ferri, M., Papchenko, K., Degli Esposti, M., Tondi, G., De Angelis, M. G., Morselli, D., y Fabbri, P. (2023). Fully Biobased Polyhydroxyalkanoate/Tannin Films as Multifunctional Materials for Smart Food Packaging Applications. ACS Applied Materials and Interfaces, 15(23), 28594–28605. https://doi.org/10.1021/acsami.3c04611
Foltynowicz, Z. (2020). Polymer packaging materials - Friend or foe of the circular economy. Polimery/Polymers, 65(1), 1–7. https://doi.org/10.14314/POLIMERY.2020.1.1
Gasde, J., Woidasky, J., Moesslein, J., y Lang-Koetz, C. (2021). Plastics recycling with tracer-based-sorting: Challenges of a potential radical technology. Sustainability (Switzerland), 13(1), 1–16. https://doi.org/10.3390/su13010258
Gomes, V., Pires, A. S., Mateus, N., de Freitas, V., y Cruz, L. (2022). Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocolloids, 127(January). https://doi.org/10.1016/j.foodhyd.2022.107501
Guo, M., Wu, L., Peng, J., y Chiu, C. H. (2021). Research on environmental issue and sustainable consumption of online takeout food—practice and enlightenment based on china’s meituan. Sustainability (Switzerland), 13(12). https://doi.org/10.3390/su13126722
Gzyra-Jagieła, K., Sulak, K., Draczyński, Z., Podzimek, S., Gałecki, S., Jagodzińska, S., y Borkowski, D. (2021). Modification of poly(Lactic acid) by the plasticization for application in the packaging industry. Polymers, 13(21). https://doi.org/10.3390/polym13213651
Hart, K. R., Frketic, J. B., y Brown, J. R. (2018). Recycling meal-ready-to-eat (MRE) pouches into polymer filament for material extrusion additive manufacturing. Additive Manufacturing, 21, 536–543. https://doi.org/10.1016/j.addma.2018.04.011
Hirth, S., Boons, F., y Doherty, B. (2021). Unpacking food to go: Packaging and food waste of on the go provisioning practices in the UK. Geoforum, 126, 115–125. https://doi.org/10.1016/j.geoforum.2021.07.022
Ibzhanova, A. A., Niyazbekova, R. K., Al Azzam, K. M., Negim, E. S., Serekpayeva, M. A., y Akibekov, O. S. (2022). Biodegradabiity of Non-wood Packaging Paper. Egyptian Journal of Chemistry, 65(10), 131–139. https://doi.org/10.21608/EJCHEM.2022.110548.5033
Kochańska, E., Łukasik, R. M., y Dzikuć, M. (2021). New circular challenges in the development of take-away food packaging in the covid-19 period. Energies, 14(15), 1–18. https://doi.org/10.3390/en14154705
Long, C., Qing, Y., Long, X., Liu, N., Xu, X., An, K., Han, M., Li, S., y Liu, C. (2022). Synergistic reinforced superhydrophobic paper with green, durability, and antifouling function. Applied Surface Science, 579, 152144. https://doi.org/10.1016/j.apsusc.2021.152144
López-Aguirre, J., Pumaquero-Yuquilema, J., y Lopez-Salazar, J. (2020). Análisis de la contaminación ambiental por plásticos. Polo del Conocimiento, 5(12), 725–742. https://doi.org/10.23857/pc.v5i12.2139
Luchese, C. L., Sperotto, N., Spada, J. C., y Tessaro, I. C. (2017). Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film. International Journal of Biological Macromolecules, 104, 11–18. https://doi.org/10.1016/j.ijbiomac.2017.05.149
Mohamad, E. A., Shehata, A. M., Abobah, A. M., Kholief, A. T., Ahmed, M. A., Abdelhakeem, M. E., Dawood, N. K., y Mohammed, H. S. (2023). Chitosan-based films blended with moringa leaves and MgO nanoparticles for application in active food packaging. International Journal of Biological Macromolecules, 253(P6), 127045. https://doi.org/10.1016/j.ijbiomac.2023.127045
Nadi, M., Razavi, S. M. A., y Shahrampour, D. (2023). Fabrication of green colorimetric smart packaging based on basil seed gum/chitosan/red cabbage anthocyanin for real-time monitoring of fish freshness. Food Science and Nutrition, April, 6360–6375. https://doi.org/10.1002/fsn3.3574
Nowak, N., Grzebieniarz, W., Khachatryan, G., Konieczna-Molenda, A., Krzan, M., y Khachatryan, K. (2022). Preparation of nano/microcapsules of ozonated olive oil in chitosan matrix and analysis of physicochemical and microbiological properties of the obtained films. Innovative Food Science and Emerging Technologies, 82(July), 103181. https://doi.org/10.1016/j.ifset.2022.103181
Oliveira, M. C., y Magrini, A. (2017). Life cycle assessment of lubricant oil plastic containers in Brazil. Sustainability (Switzerland), 9(4). https://doi.org/10.3390/su9040576
Piotrowski, N. (2023). Machine learning approach to packaging compatibility testing in the new product development process. Journal of Intelligent Manufacturing, 1223. https://doi.org/10.1007/s10845-023-02090-8
Poyatos-Racionero, E., Ros-Lis, J. V., Vivancos, J. L., y Martínez-Máñez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, 172, 3398–3409. https://doi.org/10.1016/j.jclepro.2017.11.075
Radford, D., Guild, B., Strange, P., Ahmed, R., Lim, L. T., y Balamurugan, S. (2017). Characterization of antimicrobial properties of Salmonella phage Felix O1 and Listeria phage A511 embedded in xanthan coatings on Poly(lactic acid) films. Food Microbiology, 66, 117–128. https://doi.org/10.1016/j.fm.2017.04.015
Rai, P., Verma, S., Mehrotra, S., Priya, S., y Sharma, S. K. (2023). Sensor-integrated biocomposite membrane for food quality assessment. Food Chemistry, 401, 134180. https://doi.org/10.1016/j.foodchem.2022.134180
Roy, S., Chawla, R., Santhosh, R., Thakur, R., Sarkar, P., y Zhang, W. (2023). Agar-based edible films and food packaging application: A comprehensive review. Trends in Food Science and Technology, 141(October), 104198. https://doi.org/10.1016/j.tifs.2023.104198
Santiago Celi-Simbaña, S., Sebastián, D., Teddy, A., Bermeo, I., Iv, S., Ii, A.-M., y Loza, S. J. (2023). Microplásticos, un problema de salud pública emergente. Revista Información Científica, 102(1028–9933), 1–12. https://doi.org/10.5281/zenodo.8105111
Sarfraz, M., Raza, M., Khalid, R., Liu, T., Li, Z., y Niyomdecha, L. (2022). Consumer Purchasing Behavior Toward Green Environment in the Healthcare Industry: Mediating Role of Entrepreneurial Innovation and Moderating Effect of Absorptive Capacity. Frontiers in Public Health, 9(February), 1–13. https://doi.org/10.3389/fpubh.2021.823307
Schenker, U., Chardot, J., Missoum, K., Vishtal, A., y Bras, J. (2021). Short communication on the role of cellulosic fiber-based packaging in reduction of climate change impacts. Carbohydrate Polymers, 254(October 2020), 117248. https://doi.org/10.1016/j.carbpol.2020.117248
Sereda, L., y Flores-Sahagun, T. H. S. (2023). Panorama of the Brazilian Plastic Packaging Sector and Global Technological Trends: the Role of Developed and Developing Countries in Achieving Environmental Sustainability and a Better Quality of Life Worldwide. Biointerface Research in Applied Chemistry, 13(3), 33263. https://doi.org/10.33263/BRIAC133.244
Sharma, C., Bhardwaj, N. K., y Pathak, P. (2021). Static intermittent fed-batch production of bacterial nanocellulose from black tea and its modification using chitosan to develop antibacterial green packaging material. Journal of Cleaner Production, 279, 123608. https://doi.org/10.1016/j.jclepro.2020.123608
Solano-Doblado, L. G., Alamilla-Beltrán, L., y Jiménez-Martínez, C. (2018). Películas y recubrimientos comestibles funcionalizados. TIP Revista Especializada en Ciencias Químico-Biológicas, 21, 30. https://doi.org/10.22201/fesz.23958723e.2018.0.153
Stoica, M., Marian Antohi, V., Laura Zlati, M., y Stoica, D. (2020). The financial impact of replacing plastic packaging by biodegradable biopolymers - A smart solution for the food industry. Journal of Cleaner Production, 277, 124013. https://doi.org/10.1016/j.jclepro.2020.124013
Wang, Q., Chen, W., Ma, C., Chen, S., Liu, X., y Liu, F. (2022). Enzymatic synthesis of sodium caseinate-EGCG-carboxymethyl chitosan ternary film: Structure, physical properties, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 222, 509–520. https://doi.org/10.1016/j.ijbiomac.2022.09.138
Wing Fu, L. (2023). Design and application of self-healable polymeric films and coatings for smart food packaging. npj Science of Food, 7(1), 1–11. https://doi.org/10.1038/s41538-023-00185-3
Wu, Y., Xu, F., Zhao, H., Wu, H., Sun, C., y Li, Q. (2023). Furoic acid-mediated konjac glucomannan/flaxseed gum based green biodegradable antibacterial film for Shine-Muscat grape preservation. International Journal of Biological Macromolecules, 253, 126883. https://doi.org/10.1016/j.ijbiomac.2023.126883
Yadav, N., y Kaur, R. (2019). Environment friendly qualitatively responsive ethyl cellulose films as smart food packaging. Materials Express, 9(7), 792–800. https://doi.org/10.1166/mex.2019.1559
Yuan, Z. (2023). Retracted: Application of Green Ecological Design in Food Packaging Design. Journal of Food Quality, 2023, 1–1. https://doi.org/10.1155/2023/9854783
Zhan, L., Zhang, Q., Bulati, A., Wang, R., y Xu, Z. (2022). Characteristics of microplastics and the role for complex pollution in e-waste recycling base of Shanghai, China. Environment International, 169(August), 107515. https://doi.org/10.1016/j.envint.2022.107515
Zhao, R., Guo, H., Yan, T., Li, J., Xu, W., Deng, Y., Zhou, J., Ye, X., Liu, D., y Wang, W. (2022). Fabrication of multifunctional materials based on chitosan/gelatin incorporating curcumin-clove oil emulsion for meat freshness monitoring and shelf-life extension. International Journal of Biological Macromolecules, 223, 837–850. https://doi.org/10.1016/j.ijbiomac.2022.10.271
Zhao, Z., Zheng, H., y Liu, Y. (2022). The appearance design of agricultural product packaging art style under the intelligent computer aid. Computer-Aided Design and Applications, 19(S3), 164–173. https://doi.org/10.14733/CADAPS.2022.S3.164-173
Zia, J., Mancini, G., Bustreo, M., Zych, A., Donno, R., Athanassiou, A., y Fragouli, D. (2021). Porous pH natural indicators for acidic and basic vapor sensing. Chemical Engineering Journal, 403, 126373. https://doi.org/10.1016/j.cej.2020.126373
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.