Aspects associated with the design of smart food packaging and its relationship with the environment: a systematic review
DOI:
https://doi.org/10.35197/rx.20.02.2024.08.gsKeywords:
smart packaging, design, food industry, biodegradableAbstract
Food packaging plays a crucial role in enhancing product quality by preserving and communicating its value and nutritional composition. Moreover, smart packaging technologies offer improved functionality, extended shelf life, and solutions to sustainability challenges. This systematic review aims to examine the design aspects of smart packaging in the food industry and its environmental implications, drawing from scientific literature published between 2017 and 2023. Data were sourced from the Scopus database using a search equation incorporating terms related to smart packaging, industry, and the environment. The initial search identified 4,540 articles, of which 55 were selected through the PRISMA method. Notably, over 20% of the studies originated from China, followed by Italy and Brazil, with a marked increase in publications since 2020. The most frequently used descriptors were "packaging materials" and "food packaging." Half of the selected articles discussed the environmental benefits of smart packaging design, particularly the use of recyclable materials and agro-industrial waste. Key factors in the design process include biodegradability, food compatibility, and cost efficiency. In conclusion, integrating advanced technologies and organic waste into packaging production not only enhances product quality and consumer satisfaction but also fosters sustainable practices.
Downloads
References
Acosta, I., Marrero, F. y Espinosa, J. U. (2020). La economía circular como contribución a la sostenibilidad en un destino turístico cubano de sol y playa. Estudios y Perspectivas en Turismo, 29(2), 406–425. https://www.redalyc.org/journal/1807/180763168005/180763168005.pdf
Alpaslan, D., Dudu, T. E., Şahiner, N., y Aktaş, N. (2020). Synthesis and preparation of responsive poly(Dimethyl acrylamide/gelatin and pomegranate extract) as a novel food packaging material. Materials Science and Engineering C, 108(October 2018), 110339. https://doi.org/10.1016/j.msec.2019.110339
Ardila-Diaz, L. D., de Oliveira, T. V., y Soares, N. de F. F. (2020). Development and evaluation of the chromatic behavior of an intelligent packaging material based on cellulose acetate incorporated with polydiacetylene for an efficient packaging. Biosensors, 10(6). https://doi.org/10.3390/BIOS10060059
Bala, A., Laso, J., Abejón, R., Margallo, M., Fullana-i-Palmer, P., y Aldaco, R. (2020). Environmental assessment of the food packaging waste management system in Spain: Understanding the present to improve the future. Science of the Total Environment, 702, 134603. https://doi.org/10.1016/j.scitotenv.2019.134603
Bansal, S., Singh Kushwah, S., Garg, A., y Sharma, K. (2023). Utilization of plastic waste in construction industry in India – A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2023.03.693
Blettler, M. C. M., Agustini, E., Abrial, E., Piacentini, R., Garello, N., Wantzen, K. M., Vega, M. G., y Espinola, L. A. (2023). The challenge of reducing macroplastic pollution: Testing the effectiveness of a river boom under real environmental conditions. Science of the Total Environment, 870(January), 1–8. https://doi.org/10.1016/j.scitotenv.2023.161941
Carfí, D., y Donato, A. (2022). Plastic-Pollution Reduction and Bio-Resources Preservation Using Green-Packaging Game Coopetition. Mathematics, 10(23), 1–20. https://doi.org/10.3390/math10234553
Chen, X., Kroell, N., Dietl, T., Feil, A., y Greiff, K. (2021). Influence of long-term natural degradation processes on near-infrared spectra and sorting of post-consumer plastics. Waste Management, 136(July), 213–218. https://doi.org/10.1016/j.wasman.2021.10.006
Chen, Z., Mei, Y., Liu, S., Li, H., Liu, L., Lei, X., Zhou, Y., y Gao, X. (2021). Reliability in Electronic Packaging: Past, Now and Future. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 57(16), 248–268. https://doi.org/10.3901/JME.2021.16.248
Ciravegna, E. (2020). Repensar los envases en tiempos de crisis: implicancias éticas y enfoque sistémico en el Diseño de Packaging. RChD: creación y pensamiento, 5(9), 1. https://doi.org/10.5354/0719-837x.2020.59536
Contessa, C. R., de Souza, N. B., Gonçalo, G. B., de Moura, C. M., da Rosa, G. S., y Moraes, C. C. (2021). Development of active packaging based on agar-agar incorporated with bacteriocin of lactobacillus sakei. Biomolecules, 11(12), 1–9. https://doi.org/10.3390/biom11121869
da Silva Filipini, G., Romani, V. P., y Guimarães Martins, V. (2020). Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocolloids, 109(May). https://doi.org/10.1016/j.foodhyd.2020.106139
Daniele, R., Armoni, D., Dul, S., y Alessandro, P. (2023). From Nautical Waste to Additive Manufacturing: Sustainable Recycling of High-Density Polyethylene for 3D Printing Applications. Journal of Composites Science, 7(8). https://doi.org/10.3390/jcs7080320
Dirpan, A., Hidayat, S. H., Djalal, M., Ainani, A. F., Yolanda, D. S., Kasmira, Khosuma, M., Solon, G. T., y Ismayanti, N. (2023). Trends over the last 25 years and future research into smart packaging for food: A review. Future Foods, 8(August), 100252. https://doi.org/10.1016/j.fufo.2023.100252
Ducki, K., Orynycz, O., Wasiak, A., Gola, A., y Mieszkalski, L. (2022). Potential Routes to the Sustainability of the Food Packaging Industry. Sustainability (Switzerland), 14(7). https://doi.org/10.3390/su14073924
Evyan, Y. C. Y., Liew, M. S., Patricia, J., Chong, M. Y., y Zairul, Z. A. (2022). Biodegradable food packaging and film: a short review. Food Research, 6, 1–12. https://doi.org/10.26656/fr.2017.6(S1).007
Fahim, I. S., Chbib, H., y Mahmoud, H. M. (2019). The synthesis, production y economic feasibility of manufacturing PLA from agricultural waste. Sustainable Chemistry and Pharmacy, 12(March), 100142. https://doi.org/10.1016/j.scp.2019.100142
Ferri, M., Papchenko, K., Degli Esposti, M., Tondi, G., De Angelis, M. G., Morselli, D., y Fabbri, P. (2023). Fully Biobased Polyhydroxyalkanoate/Tannin Films as Multifunctional Materials for Smart Food Packaging Applications. ACS Applied Materials and Interfaces, 15(23), 28594–28605. https://doi.org/10.1021/acsami.3c04611
Foltynowicz, Z. (2020). Polymer packaging materials - Friend or foe of the circular economy. Polimery/Polymers, 65(1), 1–7. https://doi.org/10.14314/POLIMERY.2020.1.1
Gasde, J., Woidasky, J., Moesslein, J., y Lang-Koetz, C. (2021). Plastics recycling with tracer-based-sorting: Challenges of a potential radical technology. Sustainability (Switzerland), 13(1), 1–16. https://doi.org/10.3390/su13010258
Gomes, V., Pires, A. S., Mateus, N., de Freitas, V., y Cruz, L. (2022). Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocolloids, 127(January). https://doi.org/10.1016/j.foodhyd.2022.107501
Guo, M., Wu, L., Peng, J., y Chiu, C. H. (2021). Research on environmental issue and sustainable consumption of online takeout food—practice and enlightenment based on china’s meituan. Sustainability (Switzerland), 13(12). https://doi.org/10.3390/su13126722
Gzyra-Jagieła, K., Sulak, K., Draczyński, Z., Podzimek, S., Gałecki, S., Jagodzińska, S., y Borkowski, D. (2021). Modification of poly(Lactic acid) by the plasticization for application in the packaging industry. Polymers, 13(21). https://doi.org/10.3390/polym13213651
Hart, K. R., Frketic, J. B., y Brown, J. R. (2018). Recycling meal-ready-to-eat (MRE) pouches into polymer filament for material extrusion additive manufacturing. Additive Manufacturing, 21, 536–543. https://doi.org/10.1016/j.addma.2018.04.011
Hirth, S., Boons, F., y Doherty, B. (2021). Unpacking food to go: Packaging and food waste of on the go provisioning practices in the UK. Geoforum, 126, 115–125. https://doi.org/10.1016/j.geoforum.2021.07.022
Ibzhanova, A. A., Niyazbekova, R. K., Al Azzam, K. M., Negim, E. S., Serekpayeva, M. A., y Akibekov, O. S. (2022). Biodegradabiity of Non-wood Packaging Paper. Egyptian Journal of Chemistry, 65(10), 131–139. https://doi.org/10.21608/EJCHEM.2022.110548.5033
Kochańska, E., Łukasik, R. M., y Dzikuć, M. (2021). New circular challenges in the development of take-away food packaging in the covid-19 period. Energies, 14(15), 1–18. https://doi.org/10.3390/en14154705
Long, C., Qing, Y., Long, X., Liu, N., Xu, X., An, K., Han, M., Li, S., y Liu, C. (2022). Synergistic reinforced superhydrophobic paper with green, durability, and antifouling function. Applied Surface Science, 579, 152144. https://doi.org/10.1016/j.apsusc.2021.152144
López-Aguirre, J., Pumaquero-Yuquilema, J., y Lopez-Salazar, J. (2020). Análisis de la contaminación ambiental por plásticos. Polo del Conocimiento, 5(12), 725–742. https://doi.org/10.23857/pc.v5i12.2139
Luchese, C. L., Sperotto, N., Spada, J. C., y Tessaro, I. C. (2017). Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film. International Journal of Biological Macromolecules, 104, 11–18. https://doi.org/10.1016/j.ijbiomac.2017.05.149
Mohamad, E. A., Shehata, A. M., Abobah, A. M., Kholief, A. T., Ahmed, M. A., Abdelhakeem, M. E., Dawood, N. K., y Mohammed, H. S. (2023). Chitosan-based films blended with moringa leaves and MgO nanoparticles for application in active food packaging. International Journal of Biological Macromolecules, 253(P6), 127045. https://doi.org/10.1016/j.ijbiomac.2023.127045
Nadi, M., Razavi, S. M. A., y Shahrampour, D. (2023). Fabrication of green colorimetric smart packaging based on basil seed gum/chitosan/red cabbage anthocyanin for real-time monitoring of fish freshness. Food Science and Nutrition, April, 6360–6375. https://doi.org/10.1002/fsn3.3574
Nowak, N., Grzebieniarz, W., Khachatryan, G., Konieczna-Molenda, A., Krzan, M., y Khachatryan, K. (2022). Preparation of nano/microcapsules of ozonated olive oil in chitosan matrix and analysis of physicochemical and microbiological properties of the obtained films. Innovative Food Science and Emerging Technologies, 82(July), 103181. https://doi.org/10.1016/j.ifset.2022.103181
Oliveira, M. C., y Magrini, A. (2017). Life cycle assessment of lubricant oil plastic containers in Brazil. Sustainability (Switzerland), 9(4). https://doi.org/10.3390/su9040576
Piotrowski, N. (2023). Machine learning approach to packaging compatibility testing in the new product development process. Journal of Intelligent Manufacturing, 1223. https://doi.org/10.1007/s10845-023-02090-8
Poyatos-Racionero, E., Ros-Lis, J. V., Vivancos, J. L., y Martínez-Máñez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, 172, 3398–3409. https://doi.org/10.1016/j.jclepro.2017.11.075
Radford, D., Guild, B., Strange, P., Ahmed, R., Lim, L. T., y Balamurugan, S. (2017). Characterization of antimicrobial properties of Salmonella phage Felix O1 and Listeria phage A511 embedded in xanthan coatings on Poly(lactic acid) films. Food Microbiology, 66, 117–128. https://doi.org/10.1016/j.fm.2017.04.015
Rai, P., Verma, S., Mehrotra, S., Priya, S., y Sharma, S. K. (2023). Sensor-integrated biocomposite membrane for food quality assessment. Food Chemistry, 401, 134180. https://doi.org/10.1016/j.foodchem.2022.134180
Roy, S., Chawla, R., Santhosh, R., Thakur, R., Sarkar, P., y Zhang, W. (2023). Agar-based edible films and food packaging application: A comprehensive review. Trends in Food Science and Technology, 141(October), 104198. https://doi.org/10.1016/j.tifs.2023.104198
Santiago Celi-Simbaña, S., Sebastián, D., Teddy, A., Bermeo, I., Iv, S., Ii, A.-M., y Loza, S. J. (2023). Microplásticos, un problema de salud pública emergente. Revista Información Científica, 102(1028–9933), 1–12. https://doi.org/10.5281/zenodo.8105111
Sarfraz, M., Raza, M., Khalid, R., Liu, T., Li, Z., y Niyomdecha, L. (2022). Consumer Purchasing Behavior Toward Green Environment in the Healthcare Industry: Mediating Role of Entrepreneurial Innovation and Moderating Effect of Absorptive Capacity. Frontiers in Public Health, 9(February), 1–13. https://doi.org/10.3389/fpubh.2021.823307
Schenker, U., Chardot, J., Missoum, K., Vishtal, A., y Bras, J. (2021). Short communication on the role of cellulosic fiber-based packaging in reduction of climate change impacts. Carbohydrate Polymers, 254(October 2020), 117248. https://doi.org/10.1016/j.carbpol.2020.117248
Sereda, L., y Flores-Sahagun, T. H. S. (2023). Panorama of the Brazilian Plastic Packaging Sector and Global Technological Trends: the Role of Developed and Developing Countries in Achieving Environmental Sustainability and a Better Quality of Life Worldwide. Biointerface Research in Applied Chemistry, 13(3), 33263. https://doi.org/10.33263/BRIAC133.244
Sharma, C., Bhardwaj, N. K., y Pathak, P. (2021). Static intermittent fed-batch production of bacterial nanocellulose from black tea and its modification using chitosan to develop antibacterial green packaging material. Journal of Cleaner Production, 279, 123608. https://doi.org/10.1016/j.jclepro.2020.123608
Solano-Doblado, L. G., Alamilla-Beltrán, L., y Jiménez-Martínez, C. (2018). Películas y recubrimientos comestibles funcionalizados. TIP Revista Especializada en Ciencias Químico-Biológicas, 21, 30. https://doi.org/10.22201/fesz.23958723e.2018.0.153
Stoica, M., Marian Antohi, V., Laura Zlati, M., y Stoica, D. (2020). The financial impact of replacing plastic packaging by biodegradable biopolymers - A smart solution for the food industry. Journal of Cleaner Production, 277, 124013. https://doi.org/10.1016/j.jclepro.2020.124013
Wang, Q., Chen, W., Ma, C., Chen, S., Liu, X., y Liu, F. (2022). Enzymatic synthesis of sodium caseinate-EGCG-carboxymethyl chitosan ternary film: Structure, physical properties, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 222, 509–520. https://doi.org/10.1016/j.ijbiomac.2022.09.138
Wing Fu, L. (2023). Design and application of self-healable polymeric films and coatings for smart food packaging. npj Science of Food, 7(1), 1–11. https://doi.org/10.1038/s41538-023-00185-3
Wu, Y., Xu, F., Zhao, H., Wu, H., Sun, C., y Li, Q. (2023). Furoic acid-mediated konjac glucomannan/flaxseed gum based green biodegradable antibacterial film for Shine-Muscat grape preservation. International Journal of Biological Macromolecules, 253, 126883. https://doi.org/10.1016/j.ijbiomac.2023.126883
Yadav, N., y Kaur, R. (2019). Environment friendly qualitatively responsive ethyl cellulose films as smart food packaging. Materials Express, 9(7), 792–800. https://doi.org/10.1166/mex.2019.1559
Yuan, Z. (2023). Retracted: Application of Green Ecological Design in Food Packaging Design. Journal of Food Quality, 2023, 1–1. https://doi.org/10.1155/2023/9854783
Zhan, L., Zhang, Q., Bulati, A., Wang, R., y Xu, Z. (2022). Characteristics of microplastics and the role for complex pollution in e-waste recycling base of Shanghai, China. Environment International, 169(August), 107515. https://doi.org/10.1016/j.envint.2022.107515
Zhao, R., Guo, H., Yan, T., Li, J., Xu, W., Deng, Y., Zhou, J., Ye, X., Liu, D., y Wang, W. (2022). Fabrication of multifunctional materials based on chitosan/gelatin incorporating curcumin-clove oil emulsion for meat freshness monitoring and shelf-life extension. International Journal of Biological Macromolecules, 223, 837–850. https://doi.org/10.1016/j.ijbiomac.2022.10.271
Zhao, Z., Zheng, H., y Liu, Y. (2022). The appearance design of agricultural product packaging art style under the intelligent computer aid. Computer-Aided Design and Applications, 19(S3), 164–173. https://doi.org/10.14733/CADAPS.2022.S3.164-173
Zia, J., Mancini, G., Bustreo, M., Zych, A., Donno, R., Athanassiou, A., y Fragouli, D. (2021). Porous pH natural indicators for acidic and basic vapor sensing. Chemical Engineering Journal, 403, 126373. https://doi.org/10.1016/j.cej.2020.126373
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.