Future prospects for food biofortification: the association with soil microorganisms

Authors

  • José Alberto Gío Trujillo
  • Carlos Juan Alvarado López
  • Neith Aracely Pacheco López
  • Jairo Cristóbal Alejo
  • Arturo Reyes Ramírez

DOI:

https://doi.org/10.35197/rx.18.04.2022.08.jg

Keywords:

alternative crops, sustainability, innovation, biofortified foods

Abstract

The problem of food insufficiency and insecurity affects close to 1 billion people worldwide, frequently due to the deficiency of essential mineral elements present in food, such as iron, copper, iodine, selenium and zinc. In addition, the low fertility of soils affects the mobility of nutrients in the soil and the dynamics of plant absorption, directly influencing their production, crop quality and the inadequate nutritional balance of the population. A viable strategy to face this problem is crop biofortification, which aims to improve the nutritional status and value of crops by producing foods with high nutritional value in mineral elements that are deficient in the diet of the world's population. This review article is an analysis of what biofortification implies, its current context and the initiatives of international programs, institutions and policies for the improvement of nutrition, food security and public health. The future perspectives of biofortification explored in this review revolve around the enrichment of natural compounds in vegetables and fruits, as well as the feasibility of biofortification of alternative crops due to their profitability, nutritional value and their good acceptance in the market for human consumption. The analysis of future perspectives and recent advances in this lines of research, focused on obtaining strategies that increase mineral absorption and bioavailability in the plant to achieve greater benefit, the practice of applying soil microorganisms (arbuscular mycorrhizae and plant growth promoting bacteria) is emerging as the strategy with greater accessibility to the farmer at all levels of production, cost reduction and increased yields, while improving various nutritional characteristics of food.

Downloads

Download data is not yet available.

References

AgroSalud. (2010). El impacto nutricional de cultivos biofortificados o cultivos con mayor calidad nutricional. Colombia: Centro Internacional de Agricultura Tropical (CIAT). Recuperado de http://lac.harvestplus.org/wp-content/uploads/2015/02/cartilla-impacto-nutricional_impresion_feb12_10.pdf

Almendros, P., Obrador, A., Gonzalez, D., y Alvarez, J. M. (2015). Biofortification of zinc in onions (Allium cepa L.) and soil Zn status by the application of different organic Zn complexes. Scientia Horticulturae, 186: 254-265. doi: https://doi.org/10.1016/j.scienta.2015.02.023

Ansari, S. A., y Thapa, S. (2019). Biofortification of Food Crops: An Approach towards Improving Nutritional Security in South Asia. IJAAST, 6(12), 23-33. Recuperado de https://ijaast.com/publications/vol6issue12/V6I1202.pdf

Ayoub, A., Mushtaq, M., Mir Z. A. y Dar, A. A. (2020) Biofortification in Fruits. In: Sharma, T.R., Deshmukh, R., Sonah, H. (eds) Advances in Agri-Food Biotechnology. Springer, Singapore. 131-151. doi: https://doi.org/10.1007/978-981-15-2874-3_6

Bañuelos, G.S., Arroyo, I., Pickering, I. J., Yang, S. I. y Freeman, J. L. (2015). Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food chemistry, 166, 603-608. doi: 10.1016/j.foodchem.2014.06.071

Barrameda-Medina, Y., Blasco, B., Lentini, M., Esposito, S., Baenas, N., Moreno, D.A. y Ruiz, J.M. (2017). Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco. Plant science, 258, 45-51. doi: https://doi.org/10.1016/j.plantsci.2017.02.004

BioFORT. (2015). Rede de BioFORT. Recuperado de https://biofort.com.br/author/redebiofort/ Birol, E., Meenakshi, J, V., Oparinde, A., Perez S. y Tomlins, K. (2015). Developing country consumers’ acceptance of biofortified foods: a synthesis. Food Security, 7(3), 555-568. doi: 10.1007/s12571-015-0464-7

Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V. y Pfeiffer W.H. (2011). Biofortification: a new tool to reduce micronutrient malnutrition. Food and nutrition bulletin, 32(1_suppl1), S31-S40. doi: https://doi.org/10.1177/15648265110321S105

Bouis, H. E., y Welch, R. M. (2010). Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop science, 50, S-20. doi: https://doi.org/10.2135/cropsci2009.09.0531

Bouis, H., Saltzman, A., Low J., Ball A. y Covic N. (2017). An overview of the landscape and approach for biofortification in Africa. African Journal of Food, Agriculture, Nutrition and Development, 17(2), 11848-11864. doi: 10.18697/ajfand.78.HarvestPlus01

Bouis, H., y Saltzman, A. (2017). Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2017. Global Food Security, 12, 49-58. doi: https://doi.org/10.1016/j.gfs.2017.01.009

Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification?. Plant and soil, 302(1), 1-17. doi: 10.1007/s11104-007-9466-3

Carranco Jáuregui, M. E., Calvo-Carrillo, M. y Pérez-Gil Romo, F. (2011). Carotenoides y su función antioxidante: Revisión. Archivos latinoamericanos de nutrición, 61(3), 233-241. Recuperado de http://ve.scielo.org/pdf/alan/v61n3/art01.pdf

De Steur, H., Demont, M., Gellynck, X. y Stein, A. J. (2017). The social and economic impact of biofortification through genetic modification. Current opinion in biotechnology, 44, 161-168. doi: https://doi.org/10.1016/j.copbio.2017.01.012

Di Gioia, F., Petropoulos, S.A., Ozores-Hampton, M., Morgan, K. y Rosskopf, E. N. (2019).Zinc and Iron Agronomic Biofortification of Brassicaceae Microgreens. Agronomy, 9(11), 677. doi: https://doi.org/10.3390/agronomy9110677 FAO. 2020. Hambre e inseguridad alimentaria. Recuperado de http://www.fao.org/hunger/es/.

Ferrol, N., Tamayo, E. y Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of experimental botany. Vol. 67, (22), 6253–6265. doi: https://doi.org/10.1093/jxb/erw403

Fundación Valles. Fundación para el Desarrollo Tecnológico y Agropecuario de los Valles. (2019). Memoria Institutional 2019. Recuperado de https://fundacionvalles.org/wp-content/uploads/2020/10/Memoria2019.pdf

Garcia-Casal, M. N., Pena-Rosas, J. P., Giyose, B., De Steur, H. y Van Der Straeten, D. (2017). Staple crops biofortified with increased vitamins and minerals: considerations for a public health strategy.Annals of the New York Academy of Sciences, 1390(1), 3-13. doi: https://doi.org/10.1111/nyas.13293

Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V. y Arora, P. (2018). Biofortified crops generated by breeding, agronomy and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition. 5:12. doi: https://doi.org/10.3389/fnut.2018.00012

Giuliano, G. (2017). Provitamin A biofortification of crop plants: a gold rush with many miners. Current opinion in biotechnology, 44, 169-180. doi: https://doi.org/10.1016/j.copbio.2017.02.001

Golob, A., Kroflič, A., Jerše, A., Kacjan,Maršić, N., Šircelj, H., Stibilj, V. y Germ, M. (2020). Response of Pumpkin to Different Concentrations and Forms of Selenium and Iodine, and their Combinations. Plants, 9(7), 899. doi: 10.3390/plants9070899

Golubkina, N., Kekina, H. y Caruso, G. (2018). Yield, quality and antioxidant properties of Indian mustard (Brassica juncea L.) in response to foliar biofortification with selenium and iodine. Plants, 7(4), 80. doi: 10.3390/plants7040080

Gómez‐Galera, S., Twyman, R. M., Sparrow, P. A., Van Droogenbroeck, B., Custers, R., Capell, T. y Christou, P. (2012). Field trials and tribulations—making sense of the regulations for experimental field trials of transgenic crops in Europe. Plant biotechnology journal, 10(5), 511-523. doi: 10.1111/j.1467-7652.2012.00681.x

González, D., Almendros, P., Obrador, A. y Alvarez, J. M. (2019). Zinc application in conjunction with urea as a fertilization strategy for improving both nitrogen use efficiency and the zinc biofortification of barley. Journal of the Science of Food and Agriculture, 99(9): 4445-4451. doi: 10.1002/jsfa.9681

Guillén-Molina, M., Márquez-Quiroz, C., de la Cruz-Lázaro, E., Velázquez-Martínez, J. R., Parra, J. M. S., Carrillo, M. G. y Vidal, J. A. O. (2016). Biofortificación de frijol caupí (Vigna unguiculata L. Walp) con hierro y zinc. Revista Mexicana de Ciencias Agrícolas, (17), 3427-3438. doi: https://doi.org/10.29312/remexca.v0i20.986

Haider, M. U., Farooq, M., Nawaz, A. y Hussain, M. (2018). Foliage applied zinc ensures better growth, yield and grain biofortification of mungbean. International Journal of Agriculture and Biology, 20(12): 2817-2822. doi: 10.5433/1679-0359.2021v42n2p487

Hefferon, K. L. (2016). Can biofortified crops help attain food security? Current Molecular Biology Reports, 2(4), 180-185. doi: 10.1007/s40610-016-0048-0

Horibe, T., Sumi, H. y Teranobu, R. (2020). Zinc Biofortification of the Edible Cactus Nopalea cochenillifera Grown Under Hydroponic Conditions. Environmental Control in Biology, 58(2), 43-47. doi: https://doi.org/10.2525/ecb.58.43

Hotz, C., y Brown, K.M. (2004). Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin. 25, S99–S199. doi: https://doi.org/10.1177/15648265040251S205

IDIAP (2016). Primer Informe Diagnóstico Socioeconómico y Nutricional para el Proyecto AgroNutre Panamá. Coop. Técnica-financiera de HarvestPlus, Universidad de Panamá, Ministerio de Salud y la FAO. Recuperado de http://www.idiap.gob.pa/

Kaur, T., Rana, K. L., Kour, D., Sheikh, I., Yadav, N., Yadav, A. N., Singh Dhaliwal, H. y Saxena, A. K. (2020). Microbe-mediated biofortification for micronutrients: present status and future challenges. In Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam: 1-17. doi: https://doi.org/10.1016/B978-0-12-820528-0.00002-8

Khan, A., Singh, J., Upadhayay, V. K., Singh, A.V. y Shah, S. (2019). Microbial biofortification: a Green technology through plant growth promoting microorganisms. In: Shah, S., Venkatramanan, V., Prasad, R. (eds). Sustainable Green Technologies for Environmental Management. Springer, Singapore. (pp 255-269). doi: https://doi.org/10.1007/978-981-13-2772-8_13

Kiferle, C., Gonzali, S., Holwerda, H.T., Real Ibaceta, R. y Perata, P. (2013). Tomato fruits: a good target for iodine biofortification. Frontiers in plant science, 4, 205. doi: https://doi.org/10.3389/fpls.2013.00205

Landini, M., Gonzali, S. y Perata, P. (2011). Iodine biofortification in tomato. Journal of Plant Nutrition and Soil Science, 174(3), 480-486. doi: 10.1002/jpln.201000395

López, M. D., Revelo, M. C. y Pachón, H. (2008). El consumo y la producción familiar de fríjol, maíz, yuca, batata y arroz en un municipio rural en Colombia: Evaluación de la posibilidad de implementar la biofortificación de cultivos. Perspectivas en Nutrición Humana, 10(1), 11-21. Recuperado de https://hdl.handle.net/10568/65899

López-Gutiérrez, M. D., Benavides-Mendoza, A, Ortega-Ortiz, H., Valdez-Aguilar, L. A. Sandoval-Rangel, A. (2015). Selenio y su efecto en el estado antioxidante y la composición mineral de la lechuga. Revista mexicana de ciencias agrícolas, 6(SPE12), 2257-2262. doi: https://doi.org/10.29312

Mallari, S. (2019). ¿Cultivos biofortificados o biodiversidad? La lucha por verdaderas soluciones está en marcha. Recuperado de https://grain.org/system/articles/pdfs/000/006/245/original/Biofortified%20Crops%20ES%2002.pdf?1559642333

Mayer, J. E., Pfeiffer, W. H. y Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Current opinion in plant biology, 11(2), 166-170. doi: https://doi.org/10.1016/j.pbi.2008.01.007

Melgoza, F.A.G., Escalante, F.B., Cavazos, C.J.L, Torres, V.R., De las Nieves Rodríguez-Mendoza, M., Fuentes, J.A.G. y Mendoza, A. B. (2016). Respuesta de las plantas de melón a las aplicaciones de yoduro de potasio. Revista Mexicana de Ciencias Agrícolas, (17), 3465-3475. Recuperado de https://www.redalyc.org/pdf/2631/263149506007.pdf

Merinero de los Santos, M., Pérez-Aranda Redondo, M., Begines Ruiz, B., Martín Valero, M. J., Navarro de la Torre, S., Rodríguez Llorente, I. D., Pajuelo-Dominguez E. y Alcudia-Cruz A. (2020). Biofortificación de plantas de Medicago sativa mediante el uso de nanoparticulas cargadas con hierro. In: Beltrán-Custodio, A. y Félix Ángel, M. (eds) La investigación de hoy, el futuro de mañana. (pp 77-81). doi: 10.17993/IngyTec.2020.61

Miransari, M. (2013). Soil microbes and the availability of soil nutrients. Acta physiologiae plantarum, 35(11), 3075-3084. doi: 10.1007/s11738-013-1338-2 Monserrate Rojas, F. A., Pachón, H., Hyman, G. G. y Vesga-Varela, A. L. (2009). Metodología para seleccionar zonas de intervención con cultivos biofortificados. Revista Panamericana de Salud Pública, 26, 419-428. Recuperado de https://scielosp.org/pdf/rpsp/2009.v26n5/419-428/es

Morales-Morales, A. E., Alvarado-López, C. J., Andueza-Noh, R. H., Tun-Suarez, J. M. y Medina, K. B. (2020). Calidad nutrimental y nutracéutica en ejotes de caupí (Vigna unguiculata [L] walp.) de la península de Yucatán. Ecosistemas y Recursos Agropecuarios: 7(3) e2541. doi: https://doi.org/10.19136/era.a7n3.2541

Nair, R. M., Yang, R. Y., Easdown, W. J., Thavarajah, D., Thavarajah, P., Hughes, J. D. A. y Keatinge, J. D. H. (2013). Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. Journal of the Science of Food and Agriculture, 93(8): 1805-1813. doi: 10.1002/jsfa.6110

Nestel, P., Bouis, H. E., Meenakshi, J. V. y Pfeiffer, W. (2006). Biofortification of staple food crops. The Journal of nutrition, 136(4), 1064-1067. doi: https://doi.org/10.1093/jn/136.4.1064

Pfeiffer, W.H., y McClafferty, B. (2007). HarvestPlus: Breeding crops for better nutrition. Crop Sci. 47: S88-S105. doi: https://doi.org/10.2135/cropsci2007.09.0020IPBS

Prasad, B. V. G., Mohanta, S., Rahaman, S. y Bareily, P. (2015). Bio-fortification in horticultural crops. J. Agric. Eng. Food Technol, 2(2), 95-99. Recuperado de: https://chesci.com/wp-content/uploads/2017/07/V6i22_87_CS042048053_Irene_1227-

Qaim, M., Stein, A. J. y Meenakshi, J. V. (2007). Economics of biofortification. Agricultural Economics, 37, 119-133. doi: https://doi.org/10.1111/j.1574-0862.2007.00239.x

Ramírez-Jaspeado, R., Palacios-Rojas, N., Funes, J., Pérez, S. y Donnet, M. (2018). Identificación de áreas potenciales en México para la intervención con maíz biofortificado con zinc. Revista fitotecnia mexicana, 41(3), 327-337. doi: https://doi.org/10.35196/rfm.2018.3.327-337

Ramírez-Jaspeado, R., Palacios-Rojas, N., Nutti, M. y Pérez, S. (2020). Estados potenciales en México para la producción y consumo de frijol biofortificado con hierro y zinc. Revista fitotecnia mexicana, 43(1), 11-23. doi: https://doi.org/10.35196/rfm.2020.1.11

Reyes, B., Gómez, L. y Rodríguez, C. (2020). Apoyando a productores nicaragüenses con semilla de frijol biofortificado en tiempos de COVID-19. Alianza Bioversity-CIAT/Programa HarvestPlus. Recuperado de https://alliancebioversityciat.org/es/node/16146

Rietra, R. P.J.J., Heinen, M., Dimkpa, C. O. y Bindraban, P.S. (2017). Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Communications in Soil Science and Plant Analysis. 48(16), 1895-1920. doi: https://doi.org/10.1080/00103624.2017.1407429

Rugeles-Reyes, S. M., Cecilio-Filho, A. B., López-Aguilar, M. A. y Silva, P. H. S. (2019). Foliar application of zinc in the agronomic biofortification of arugula. Food Science and Technology, 39(4), 1011-1017. doi: https://doi.org/10.1590/fst.12318

Saltzman, A., Birol, E., Bouis, H.E., Boy, E., De Moura, F.F, Islam, Y. Pfeiffer, W. H. (2013) Biofortification: progress toward a more nourishing future. Global Food Security. 2(1):9–17. doi: https://doi.org/10.1016/j.gfs.2012.12.003

Saltzman, A., Birol, E., Oparinde, A., Andersson, M.S, Asare‐Marfo, D., Diressie, M.T. y Zeller, M. (2017). Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Annals of the New York Academy of Sciences, 1390(1), 104-114. doi: 10.1111/nyas.13314

Shahzad, Z., Rouached, H. y Rakha, A. (2014). Combating mineral malnutrition through iron and zinc biofortification of cereals. Comprehensive Reviewsin Food Science and Food Safety. 13:329-346. doi: 10.1111/1541-4337.12063

Shaikh, S., y Saraf, M. (2017). Biofortification of Triticumaestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocatalysis and Agricultural Biotechnology, 9:120-126. doi: https://doi.org/10.1016/j.bcab.2016.12.008

Shivay, Y., S., Prasad, R. y Pal, M. (2015). Effects of source and method of zinc application on yield, zinc biofortification of grain, and Zn uptake and use efficiency in chickpea (Cicer arietinum L.). Communications in Soil Science and Plant Analysis, 46(17): 2191-2200. doi: https://doi.org/10.1080/00103624.2015.1069320

Sida-Arreola, J. P., Sánchez, E., Ávila-Quezada, G. D., Acosta-Muñoz, C. H., y Zamudio-Flores, P. B. (2015). Biofortificación con micronutrientes en cultivos agrícolas y su impacto en la nutrición y salud humana. Tecnociencia Chihuahua, 9(2), 67-74. Recuperado de https://vocero.uach.mx/index.php/tecnociencia/article/download/591/580/

Singh, D., y Prasanna, R. (2020). Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agronomy for Sustainable Development, 40(2): 1-21. doi: 10.1007/s13593-020-00619-2

Smoleń, S, Kowalska I., Kováčik, P., Sady, W., Grzanka, M. y Kutman, U. B. (2019). Changes in the Chemical Composition of Six Lettuce Cultivars (Lactuca sativa L.) in Response to Biofortification with Iodine and Selenium Combined with Salicylic Acid Application. Agronomy, 9(10), 660. doi: https://doi.org/10.3390/agronomy9100660

Tamayo, E., Gómez-Gallego, T., Azcón-Aguilar, C. y Ferrol, N. (2014). Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagusirregularis. Frontiers in Plant Science 5: 547. doi: https://doi.org/10.3389/fpls.2014.00547

Tisserant, E., Malbreil, M. y Kuo, A. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences, 110(50), 20117-20122. doi: https://doi.org/10.3389/fpls.2014.00547

UNICEF. (2019). Malnutrition rates remain alarming: stunting is declining too slowly while wasting still impacts the lives of far too many young children. Recuperado de https://data.unicef.org/topic/%20nutrition/malnutrition/

Velázquez-Gamboa, M.C., Rodríguez-Hernández, L., Abud-Archila, M., Gutiérrez-Miceli, F.A., González-Mendoza, D., Valdez-Salas, B. y Luján-Hidalgo, M. C. (2020). Agronomic Biofortification of Stevia rebaudiana with Zinc Oxide (ZnO) Phytonanoparticles and Antioxidant Compounds. Sugar Tech. 23(2), 453-460. doi: https://doi.org/10.1007/s12355-020-00897-w

Viruez, J., Yonekura, P., Taboada, R., Borrero, J. y Grenier, C. (2016). Arroz biofortificado para bolivia-proyecto harvestplus. In: Reunión Anual del Programa de Cooperación Centroamericana para el Mejoramiento de Cultivos y Animales: Resúmenes. INTA. San José: INTA, Résumé, LXI PCCMCA.

Zheng, X., Giuliano, G. y Al-Babili, S. (2020). Carotenoid biofortification in crop plants: citius, altius, fortius. Biochimica et BiophysicaActa (BBA)-Molecular and Cell Biology of Lipids, 1865(11), 158664. doi: 10.1016/j.bbalip.2020.158664

Published

2022-09-30

How to Cite

Gío Trujillo, J. A., Alvarado López, C. J., Pacheco López, N. A., Cristóbal Alejo, J., & Reyes Ramírez, A. (2022). Future prospects for food biofortification: the association with soil microorganisms. Revista Ra Ximhai , 18(4 Especial), 175–199. https://doi.org/10.35197/rx.18.04.2022.08.jg

Issue

Section

Artículos científicos