Cambios en las propiedades fisicoquímicas y microbiológicas del suelo generados por la producción de carbón vegetal en el bosque templado de (quercus spp.) En Santa Rosa, Gto. México
DOI:
https://doi.org/10.35197/rx.06.02.2010.03.bgPalabras clave:
Producción de carbón, cuenta microbiana, biomasa microbianaResumen
El bosque templado de Quercus spp. en Santa Rosa constituye uno de los bosques más extensos del centro de México. En este bosque, se produce carbón vegetal de manera tradicional, por las comunidades rurales. En este trabajo se evaluó el impacto de la actividad de producción de carbón vegetal en tres sitios de muestreo del bosque, en suelo del sitio de impacto, suelo adyacente al sitio de producción de carbón vegetal y suelo control sin actividad de producción de carbón, sobre las propiedades fisicoquímicas y microbiológicas. Se determinó pH, concentración de macro- y micro- elementos, se realizó cuenta microbiana en placa calculando las unidades formadoras de colonias (UFC) de bacterias, hongos, actinomicetos y rizobacterias promotoras de crecimiento de plantas (RPCP). Por último se determinó la biomasa microbiana por el método de fumigación-incubación. En el suelo de producción de carbón se obtuvo un aumento en el pH, en la concentración de cationes formadores de bases (Ca2+ y K+) y una elevada cuenta microbiana de hongos, bacterias y actinomicetos, pero la biomasa microbiana y el contenido de materia orgánica fue mayor en el suelo no control, en cuanto a las RPCP sólo se aislaron en los suelos adyacentes a sitio de producción de carbón y en el suelo no control. Los cambios fisicoquímicos generados por el efecto del calentamiento del suelo afectaron de manera importante a la comunidad microbiana favoreciendo la reducción o eliminación de grupos dominantes sensibles a altas temperaturas que participan activamente en la dinámica de los procesos del suelo.
Descargas
Citas
ååth E. y Arnebrant K. 1994.Growth rate and responses of bacterial communities to pH in limed and ash treated forest soils. Soil Biology and Biochemistry 24: 995-1165.
Belimov A. A.; Safronova V. I.; Sergeyeva T. A.; Egorova T. N.; Matveyeva V. A.; Tsyganov
V. E.; Borisov A. Y.; Tikhonovich I. A.; Kluge C.; Preisfeld A.; Dietz K.J. y Stepanok
V. V. 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1- aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology 47:642-652.
Bissett J. y Parkinson D. 1980. Long-term effects of fire on the composition and activity of the soil microflora of a subalpine, coniferous forest. Canadian Journal of Botany 58:1704- 1721.
Borken W.; Mush A. y Beese F. 2002. Changes in microbial and soil properties following compost treatment of degraded temperate forest soils. Soil Biology and biochemistry 34:403-412.
Chistian B. J.; Pasternak J. J. y Glick B. R. 1994. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Canadian Journal of Microbiology 40:1019-1025.
Choromanska U. y DeLuca T. H. 2001. Prescribed fire alters the effect of wildfire on soil biochemical properties in ponderosa pine forest. Soil Science Society of America Journal 65:232-238.
Choromanska U. y DeLuca T. H. 2002. Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biology and Biochemistry 34:263-271.
Dahlgren R. A. y Driscoll C. T. 1994. The effects of whole-tree clearcutting on soil processes at the Hubbard Brook Experimental Forest, New Hampshire, USA. Plant and Soil 158: 239-262.
Dalias P.; Anderson J. M.; Bottner P. y Coûteaux M.
M. 2002. Temperature responses of net nitrogen mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions. Soil Biology and Biochemistry 34:691-701.
Deka H. K. y Mishra R. R. 1983. The effect of slash burning on soil microflora. Plant and Soil 73:167-175.
FAO/UNESCO. 1998. FAO/UNESCO Soil map of
the world, revised legend. World Soil Resourses. 60. FAO. Roma. Italia.
Giovannini G. y Lucchesi S. 1997. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Science 162(7):479- 486.
Gómez-Luna B. E. 2003. Cambios en la dinámica del carbono y del nitrógeno de la comunidad microbiana del suelo asociados a producción de carbón en el bosque de Santa Rosa, Gto. Tesis de Doctor en Ciencias. Especialidad en Biotecnología de Plantas. CINVESTAV-IPN U. Irapuato. México 37 p.
Hirobe M.; Tokuchi N.; Wachrinrat C. y Takeda H. 2003. Fire history influences on the spatial heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical forest in Thailand. Plant and Soil 249:309-318.
Jackson M. L. 1976. Análisis Químico de Suelos. 3º Edición. Ediciones Omega, S. A., Barcelona. 256, 292 p.
Jenkin D. S. y Powlson D. S. 1976. The effect of biocidal treatments on metabolism in soil.
V. A method for measuring soil biomass. Soil Biology and Biochemistry. 8:209-213.
Johnson L. F. y Curl E. A. 1972. Methods for research on the ecology of soil-borne plant pathogens. Burgess Publishing Company. Printed in the United States of America. 55p.
Mabuhay J. A.; Nakagoshi N.; Horikoshi T. 2003. Microbial biomass and abundance after forest fire in pine forest in japan. Ecology Research 18:431-441.
Kennard D.K. y Gholz H.L. 2001. Effects of high- and-low-intensity fires on soil properties and plant growth in Bolivian dry forest. Plant and Soil. 243:119-129.
Marafa L. M. y Chau K. C. 1999. Effect of hill fire on upland soil in Hong Kong. Forest Ecology and Management 10:97-104.
Moreno-Marcos G. y Lancho-Gallardo J. F. 2002. H+ budget in oligotrophic Quercus pyrenaica forests: atmospheric and management- induced soil acidification?. Plant and Soil 243:11-22.
Olivares-Sáenz E. 1994. Paquete de diseños experimentales FAUANL. Versión 2.5 Facultad de Agronomía, Universidad Cambios en las propiedades fisicoquímicas y microbiológicas del suelo generados por la producción de carbón vegetal en el bosque templado de (quercus spp.) En Santa Rosa Gto. México.
Autónoma de Nuevo Léon, Marin N. L., México.
Olsen S. R.; Cole C. V.; Watanabes F. S. y Dean L.
A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA circular No. 939. U. S. Government Printing Office. Washington D. C.
Penrose D. M.; Moffatt B. y Glick B. R. 2001. Determination of 1-aminocyclopropane-1- carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Canadian Journal of Microbiology 47:77-80.
Penrose D.M. y Glick B.R. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth- promoting rhizobacteria. Physiologia plantarum 118:10-15.
Pietikäinen J. y Fritze H. 1995. Clear-cutting prescribed burning in coniferous forest: comparison effects on soil fungal and total microbial biomass, respiration activity and nitrification. Soil Biology and Biochemistry 27:101-109.
Plenecassagne A. E.; Romero E. F. y López C. B. 1997. Análisis de suelos, aguas, plantas. Manual de Laboratorio. CENID-RASPA. INIFAP-SARH. Gómez Palacio. Durango Dgo. México. 108 p.
Ramos J. L.; Gallegos M. T.; Marqués S.; Ramos- González M. I.; Urgel M. E. y Segura A. 2001. Responses of Gram-negative bacteria to certain environmental stressors. Current Opinión in Microbiology 4:166-171.
Shah S.; Li J.; Moffatt B. A. y Glick B. R. 1998. Isolation and characterization of ACC deaminase genes drom two different plant growth-promoting rhizobacteria. Canadian Journal of Microbiology 44:833-843.
Scharma G. D. 1981. Effect of fire on soil microorganisms in a Meghalaya pine forest. Folia Microbiologica 26: 321-327.
Timonen S.; Jǿrgensen K.S.; Haahtela K. y Sen R. 1998. Bacterial community structure at defined locations of Pinus sylvestris- Suillus bovines and Paxillus involutus mycorrhiospheres in dry pine forest humus and nursery peat. Canadian Journal of Microbiology 44:499-513.
Ulery A. L.; Graham R. C.; Amrhein C.; 1993. Wood-ash composition and soil pH following intense burning. Soil Science. 156: 358-364.
Van Hees P. A. W. y Lundström U. S. 1998. The effect of organic acids and pH in soil solution on the weathering rate. In Low molecular weight organic acids and their aluminium complex in forest soil. Edited by
P. A. W. Van Hees Linköping Studies in Science and Technology, Dissertation No. 529.
Vázquez F. J.; Acea M. J. y Carballas T. 1993. Soil microbial populations alter wildfire. FEMS Microbiological Ecology. 13:93-104.
Vázquez-Marrufo G.; Serrato-Flores R.; Frías- Hernández J. T.; Jiménez-Magdaleno L. A. y Olalde-Portugal V. 2003. Microsite soil changes associated with tradicional charcoal production in Quercus temperate forest in central Mexico. Phyton (Argentina):85-99.
Vázquez-Marrufo G. 2003. Modificaciones estructurales y funcionales asociadas al uso forestall en el Bosque de Santa Rosa, Gto. Tesis de Doctor en Ciencias. Especialidad en Biotecnología de Plantas. CINVESTAV-IPN
U. Irapuato. México 1-30 p.
Viro P. J. 1974. Effects of Forest Fire on Soil. In Fire and Ecosystems. Edited by T. T. Kozlowshi y C. E. Ahlgre. Academic Press, New York, USA. 7-46 p.
Walkley A. y Black A. I. 1934. An examination of the Degtjooreff method for determinig soil organic matter and proposed codification of the chromic acid titration method. Soil Science 39:29-38
Wirth C.; Schulze E. D.; Lühker B., Grigoriev S.; Siry, M.; Hardes G.; Ziegler W.; Backor M.; Bauer G. y Vygodkaya N. N. 2002. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant and Soil 242:41-63.
Zhang J. y George E. 2002. Changes in the extractability of cations (Ca, Mg and K) in the rhizosphere soil of Norway spruce (Picea abies) roots. Plant and Soil 243:209- 217.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2010 Blanca Estela Gómez Luna, Graciela Ma. de la Luz Ruiz Aguilar, Gerardo Vázquez Marrufo, Víctor Olalde Portugal
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.